
Guiding Principles
* Convention over Configuration
* Declarative / Self Describing
* Testable
* DRY (Don't Repeat Yourself)
* CRUD ~ 80% -> make it trivial

<angular/> Enabled Browser

2-Way Data Binding

Single Source of Truth

Model

ControllerView

Services

HTML Compiler
* Widgets
* Markup
* Directives
* Filters
* Validators

Standard Services
* Browser
* URL Router
* Resources
* Caching

Your HTML / CSS Your JavaScript

JSON RESTful URLs

Scope
* $get / $set
* $eval / $tryEval
* $watch
* $become

Scope: Outter most scope which holds services and properties such as 'people' and
'email'.

Child Scope: in this case the ng-repeat directive triggers the creation of new scopes
one for each item in an iterator expression. It than assigns the 'person' to each scope.
The scopes inherit from parent scopes so anything declared at higher scope is still
visible.

Directives: instructing the compiler to perform specific actions. In this case a repeater
iterates over the list of 'people' looking for the person with specific email. The DOM
element is then replicated to match the number of elements.

Markup: evaluates expression in the closest scope and inserts it into DOM.

Filter: Markup may include optional filter to transform value before it is displayed.

Input Widget: binds to 'email' in its scope. Changing scope changes the widget and
vice versa.

Validator: an input widget may have optional validator to notify user of wrong input.

Widget: Allows the execution of custom code which can transform the DOM.

Nested Widgets: widgets can be nested for added expressivness.

<html>
 <body>
 Find by email: <input name="email" ng-validate="email"/>

 <li ng-repeat="person in people.$filter(email)">
 {{ person.last | uppercase }},
 {{ person.first }},

 <ng:switch on="$location.hashPath">
 <div ng-switch-when="home">Welcome</div>
 <ng:include ng-switch-when="account" src="'account.html'"/>
 </ng:switch>

 </body>
</html>

Legend

One-Way Data Binding
View

Template Model

one-time
merge

:-(

Two-Way Data Binding
Template

Model

View

Continuous Updates
Model is Single-Source-of-Truth

Change to Model
updates View

Change to View
updates Model

Compile

:-)

R
ea
d

U
pd
at
e

D
el
et
e

C
re
at
e

RESTful URLs
http://server/data/Collection[/ID]

/BookPOST { name:'Moby' } { id:123,
 name:'Moby' }

/BookPOST { name:'Gatsby'} { id:456,
 name:'Rye' }

/Book/123GET { id:123,
 name:'Moby' }

/Book/456GET { id:456,
 name:'Gatsby' }

/BookGET [{ id:123,
 name:'Moby' },
 { id:456,
 name:'Rye' }
]

/Book/456POST { id: 456,
 name:'Catch' }

{ id:456,
 name:'Catch' }

/Book/456DELETE

SendVerb URL Receive

Resources

Declarative

RESTy: Declarative Data Storage

Custom Repository

M
eg

aS
to

re

Bi
gT

ab
le

Bu
ga

ni
ze

r

??
?

(CRUD)

Java

JavaScript

???

(CRUD+verbs)

Serializer

URL Router

Mapper

ACL

HTTP RESTful URL
JSON / XML / PROTO

MyApp (Chrome)

<ng:include src="$route.current.template"
 scope="$route.current.scope" />

http://server/index.html#account

Account Settings (Partial)

Navigation
Account
Settings

John Smith
123 Main St
Any Place US 12345
Save

$root Scope

<input name='name' />

<button ng-click='save()'>Save</button>

B
ro
w
se
r

R
u
n
ti
m
e

$location: {
 hashPath: 'account'
}

Partial Scope:
class AccountCntl {
 AccountCntl() {

 ...
 }

}

this.name = 'John Smith'

save()
{...}

Watch Binding

/account -> AccountCntl; Account.html
/settings -> SettingsCntl; Settings.html

$route {
 current: {
 template: 'Account.html',
 scope: new AccountCntl()
 }
}

	Notes
	<angular/> parts
	<angular/> usage
	One Way Data Binding
	Two Way Data Binding
	RESTful URL
	RESTy
	Standard App

