
Kerberos Plugin Module Developer
Guide

Release 1.12

MIT

CONTENTS

1 Contents 3
1.1 General plugin concepts . 3
1.2 Client preauthentication interface (clpreauth) . 4
1.3 KDC preauthentication interface (kdcpreauth) . 5
1.4 Credential cache selection interface (ccselect) . 5
1.5 Password quality interface (pwqual) . 6
1.6 KADM5 hook interface (kadm5_hook) . 6
1.7 Host-to-realm interface (hostrealm) . 6
1.8 Local authorization interface (localauth) . 7
1.9 Server location interface (locate) . 7
1.10 Configuration interface (profile) . 8
1.11 GSSAPI mechanism interface . 9
1.12 Internal pluggable interfaces . 10

Index 13

i

ii

Kerberos Plugin Module Developer Guide, Release 1.12

Kerberos plugin modules allow increased control over MIT krb5 library and server behavior. This guide describes
how to create dynamic plugin modules and the currently available pluggable interfaces.

See plugin_config for information on how to register dynamic plugin modules and how to enable and disable modules
via krb5.conf(5).

CONTENTS 1

Kerberos Plugin Module Developer Guide, Release 1.12

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 General plugin concepts

A krb5 dynamic plugin module is a Unix shared object or Windows DLL. Typically, the source code for a dynamic
plugin module should live in its own project with a build system using automake and libtool, or tools with similar
functionality.

A plugin module must define a specific symbol name, which depends on the pluggable interface and module name.
For most pluggable interfaces, the exported symbol is a function named INTERFACE_MODULE_initvt, where
INTERFACE is the name of the pluggable interface and MODULE is the name of the module. For these interfaces, it is
possible for one shared object or DLL to implement multiple plugin modules, either for the same pluggable interface or
for different ones. For example, a shared object could implement both KDC and client preauthentication mechanisms,
by exporting functions named kdcpreauth_mymech_initvt and clpreauth_mymech_initvt.

A plugin module implementation should include the header file <krb5/INTERFACE_plugin.h>, where INTER-
FACE is the name of the pluggable interface. For instance, a ccselect plugin module implementation should use
#include <krb5/ccselect_plugin.h>.

initvt functions have the following prototype:

krb5_error_code interface_modname_initvt(krb5_context context,
int maj_ver, int min_ver,
krb5_plugin_vtable vtable);

and should do the following:

1. Check that the supplied maj_ver argument is supported by the module. If it is not supported, the function should
return KRB5_PLUGIN_VER_NOTSUPP.

2. Cast the supplied vtable pointer to the structure type corresponding to the major version, as documented in the
pluggable interface header file.

3. Fill in the structure fields with pointers to method functions and static data, stopping at the field indicated by
the supplied minor version. Fields for unimplemented optional methods can be left alone; it is not necessary to
initialize them to NULL.

In most cases, the context argument will not be used. The initvt function should not allocate memory; think of it as
a glorified structure initializer. Each pluggable interface defines methods for allocating and freeing module state if
doing so is necessary for the interface.

Pluggable interfaces typically include a name field in the vtable structure, which should be filled in with a pointer to
a string literal containing the module name.

Here is an example of what an initvt function might look like for a fictional pluggable interface named fences, for a
module named “wicker”:

3

http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/

Kerberos Plugin Module Developer Guide, Release 1.12

krb5_error_code
fences_wicker_initvt(krb5_context context, int maj_ver,

int min_ver, krb5_plugin_vtable vtable)
{

krb5_ccselect_vtable vt;

if (maj_ver == 1) {
krb5_fences_vtable vt = (krb5_fences_vtable)vtable;
vt->name = "wicker";
vt->slats = wicker_slats;
vt->braces = wicker_braces;

} else if (maj_ver == 2) {
krb5_fences_vtable_v2 vt = (krb5_fences_vtable_v2)vtable;
vt->name = "wicker";
vt->material = wicker_material;
vt->construction = wicker_construction;
if (min_ver < 2)

return 0;
vt->footing = wicker_footing;
if (min_ver < 3)

return 0;
vt->appearance = wicker_appearance;

} else {
return KRB5_PLUGIN_VER_NOTSUPP;

}
return 0;

}

1.2 Client preauthentication interface (clpreauth)

During an initial ticket request, a KDC may ask a client to prove its knowledge of the password before issuing an
encrypted ticket, or to use credentials other than a password. This process is called preauthentication, and is described
in RFC 4120 and RFC 6113. The clpreauth interface allows the addition of client support for preauthentication mech-
anisms beyond those included in the core MIT krb5 code base. For a detailed description of the clpreauth interface,
see the header file <krb5/clpreauth_plugin.h> (or <krb5/preauth_plugin.h> before release 1.12).

A clpreauth module is generally responsible for:

• Supplying a list of preauth type numbers used by the module in the pa_type_list field of the vtable structure.

• Indicating what kind of preauthentication mechanism it implements, with the flags method. In the most common
case, this method just returns PA_REAL, indicating that it implements a normal preauthentication type.

• Examining the padata information included in the preauth_required error and producing padata values for the
next AS request. This is done with the process method.

• Examining the padata information included in a successful ticket reply, possibly verifying the KDC identity and
computing a reply key. This is also done with the process method.

• For preauthentication types which support it, recovering from errors by examining the error data from the KDC
and producing a padata value for another AS request. This is done with the tryagain method.

• Receiving option information (supplied by kinit -X or by an application), with the gic_opts method.

A clpreauth module can create and destroy per-library-context and per-request state objects by implementing the init,
fini, request_init, and request_fini methods. Per-context state objects have the type krb5_clpreauth_moddata, and
per-request state objects have the type krb5_clpreauth_modreq. These are abstract pointer types; a module should
typically cast these to internal types for the state objects.

4 Chapter 1. Contents

http://tools.ietf.org/html/rfc4120.html
http://tools.ietf.org/html/rfc6113.html

Kerberos Plugin Module Developer Guide, Release 1.12

The process and tryagain methods have access to a callback function and handle (called a “rock”) which can be used
to get additional information about the current request, including the expected enctype of the AS reply, the FAST
armor key, and the client long-term key (prompting for the user password if necessary). A callback can also be used
to replace the AS reply key if the preauthentication mechanism computes one.

1.3 KDC preauthentication interface (kdcpreauth)

The kdcpreauth interface allows the addition of KDC support for preauthentication mechanisms beyond those in-
cluded in the core MIT krb5 code base. For a detailed description of the kdcpreauth interface, see the header file
<krb5/kdcpreauth_plugin.h> (or <krb5/preauth_plugin.h> before release 1.12).

A kdcpreauth module is generally responsible for:

• Supplying a list of preauth type numbers used by the module in the pa_type_list field of the vtable structure.

• Indicating what kind of preauthentication mechanism it implements, with the flags method. If the mechanism
computes a new reply key, it must specify the PA_REPLACES_KEY flag. If the mechanism is generally only
used with hardware tokens, the PA_HARDWARE flag allows the mechanism to work with principals which have
the requires_hwauth flag set.

• Producing a padata value to be sent with a preauth_required error, with the edata method.

• Examining a padata value sent by a client and verifying that it proves knowledge of the appropriate client
credential information. This is done with the verify method.

• Producing a padata response value for the client, and possibly computing a reply key. This is done with the
return_padata method.

A module can create and destroy per-KDC state objects by implementing the init and fini methods. Per-KDC state
objects have the type krb5_kdcpreauth_moddata, which is an abstract pointer types. A module should typically cast
this to an internal type for the state object.

A module can create a per-request state object by returning one in the verify method, receiving it in the return_padata
method, and destroying it in the free_modreq method. Note that these state objects only apply to the processing
of a single AS request packet, not to an entire authentication exchange (since an authentication exchange may re-
main unfinished by the client or may involve multiple different KDC hosts). Per-request state objects have the type
krb5_kdcpreauth_modreq, which is an abstract pointer type.

The edata, verify, and return_padata methods have access to a callback function and handle (called a “rock”) which
can be used to get additional information about the current request, including the maximum allowable clock skew, the
client’s long-term keys, the DER-encoded request body, the FAST armor key, string attributes on the client’s database
entry, and the client’s database entry itself.

The edata and verify methods can be implemented asynchronously. Because of this, they do not return values directly
to the caller, but must instead invoke responder functions with their results. A synchronous implementation can invoke
the responder function immediately. An asynchronous implementation can use the callback to get an event context for
use with the libverto API.

1.4 Credential cache selection interface (ccselect)

The ccselect interface allows modules to control how credential caches are chosen when a GSSAPI client contacts a
service. For a detailed description of the ccselect interface, see the header file <krb5/ccselect_plugin.h>.

The primary ccselect method is choose, which accepts a server principal as input and returns a ccache and/or prin-
cipal name as output. A module can use the krb5_cccol APIs to iterate over the cache collection in order to find an
appropriate ccache to use.

1.3. KDC preauthentication interface (kdcpreauth) 5

https://fedorahosted.org/libverto/

Kerberos Plugin Module Developer Guide, Release 1.12

A module can create and destroy per-library-context state objects by implementing the init and fini methods. State
objects have the type krb5_ccselect_moddata, which is an abstract pointer type. A module should typically cast this
to an internal type for the state object.

A module can have one of two priorities, “authoritative” or “heuristic”. Results from authoritative modules, if any are
available, will take priority over results from heuristic modules. A module communicates its priority as a result of the
init method.

1.5 Password quality interface (pwqual)

The pwqual interface allows modules to control what passwords are allowed when a user changes passwords. For a
detailed description of the pwqual interface, see the header file <krb5/pwqual_plugin.h>.

The primary pwqual method is check, which receives a password as input and returns success (0) or a
KADM5_PASS_Q_ failure code depending on whether the password is allowed. The check method also receives
the principal name and the name of the principal’s password policy as input; although there is no stable interface for
the module to obtain the fields of the password policy, it can define its own configuration or data store based on the
policy name.

A module can create and destroy per-process state objects by implementing the open and close methods. State objects
have the type krb5_pwqual_moddata, which is an abstract pointer type. A module should typically cast this to an
internal type for the state object. The open method also receives the name of the realm’s dictionary file (as configured
by the dict_file variable in the kdc_realms section of kdc.conf(5)) if it wishes to use it.

1.6 KADM5 hook interface (kadm5_hook)

The kadm5_hook interface allows modules to perform actions when changes are made to the Kerberos
database through kadmin(1). For a detailed description of the kadm5_hook interface, see the header file
<krb5/kadm5_hook_plugin.h>.

The kadm5_hook interface has four primary methods: chpass, create, modify, and remove. Each of these methods is
called twice when the corresponding administrative action takes place, once before the action is committed and once
afterwards. A module can prevent the action from taking place by returning an error code during the pre-commit stage.

A module can create and destroy per-process state objects by implementing the init and fini methods. State objects
have the type kadm5_hook_modinfo, which is an abstract pointer type. A module should typically cast this to an
internal type for the state object.

Because the kadm5_hook interface is tied closely to the kadmin interface (which is explicitly unstable), it may not
remain as stable across versions as other public pluggable interfaces.

1.7 Host-to-realm interface (hostrealm)

The host-to-realm interface was first introduced in release 1.12. It allows modules to control the local mapping of
hostnames to realm names as well as the default realm. For a detailed description of the hostrealm interface, see the
header file <krb5/hostrealm_plugin.h>.

Although the mapping methods in the hostrealm interface return a list of one or more realms, only the first realm in
the list is currently used by callers. Callers may begin using later responses in the future.

Any mapping method may return KRB5_PLUGIN_NO_HANDLE to defer processing to a later module.

6 Chapter 1. Contents

Kerberos Plugin Module Developer Guide, Release 1.12

A module can create and destroy per-library-context state objects using the init and fini methods. If the module does
not need any state, it does not need to implement these methods.

The optional host_realm method allows a module to determine authoritative realm mappings for a hostname. The first
authoritative mapping is used in preference to KDC referrals when getting service credentials.

The optional fallback_realm method allows a module to determine fallback mappings for a hostname. The first
fallback mapping is tried if there is no authoritative mapping for a realm, and KDC referrals failed to produce a
succesful result.

The optional default_realm method allows a module to determine the local default realm.

If a module implements any of the above methods, it must also implement free_list to ensure that memory is allocated
and deallocated consistently.

1.8 Local authorization interface (localauth)

The localauth interface was first introduced in release 1.12. It allows modules to control the relationship
between Kerberos principals and local system accounts. When an application calls krb5_kuserok() or
krb5_aname_to_localname(), localauth modules are consulted to determine the result. For a detailed de-
scription of the localauth interface, see the header file <krb5/localauth_plugin.h>.

A module can create and destroy per-library-context state objects using the init and fini methods. If the module does
not need any state, it does not need to implement these methods.

The optional userok method allows a module to control the behavior of krb5_kuserok(). The module re-
ceives the authenticated name and the local account name as inputs, and can return either 0 to authorize access,
KRB5_PLUGIN_NO_HANDLE to defer the decision to other modules, or another error (canonically EPERM) to au-
thoritatively deny access. Access is granted if at least one module grants access and no module authoritatively denies
access.

The optional an2ln method can work in two different ways. If the module sets an array of uppercase type names
in an2ln_types, then the module’s an2ln method will only be invoked by krb5_aname_to_localname() if an
auth_to_local value in krb5.conf(5) refers to one of the module’s types. In this case, the type and residual arguments
will give the type name and residual string of the auth_to_local value.

If the module does not set an2ln_types but does implement an2ln, the module’s an2ln method will be invoked for
all krb5_aname_to_localname() operations unless an earlier module determines a mapping, with type and
residual set to NULL. The module can return KRB5_LNAME_NO_TRANS to defer mapping to later modules.

If a module implements an2ln, it must also implement free_string to ensure that memory is allocated and deallocated
consistently.

1.9 Server location interface (locate)

The locate interface allows modules to control how KDCs and similar services are located by clients. For a detailed
description of the ccselect interface, see the header file <krb5/locate_plugin.h>.

A locate module exports a structure object of type krb5plugin_service_locate_ftable, with the name
service_locator. The structure contains a minor version and pointers to the module’s methods.

The primary locate method is lookup, which accepts a service type, realm name, desired socket type, and desired
address family (which will be AF_UNSPEC if no specific address family is desired). The method should invoke the
callback function once for each server address it wants to return, passing a socket type (SOCK_STREAM for TCP

1.8. Local authorization interface (localauth) 7

Kerberos Plugin Module Developer Guide, Release 1.12

or SOCK_DGRAM for UDP) and socket address. The lookup method should return 0 if it has authoritatively deter-
mined the server addresses for the realm, KRB5_PLUGIN_NO_HANDLE if it wants to let other location mechanisms
determine the server addresses, or another code if it experienced a failure which should abort the location process.

A module can create and destroy per-library-context state objects by implementing the init and fini methods. State
objects have the type void *, and should be cast to an internal type for the state object.

1.10 Configuration interface (profile)

The profile interface allows a module to control how krb5 configuration information is obtained by the Kerberos library
and applications. For a detailed description of the profile interface, see the header file <profile.h>.

Note: The profile interface does not follow the normal conventions for MIT krb5 pluggable interfaces, because it is
part of a lower-level component of the krb5 library.

As with other types of plugin modules, a profile module is a Unix shared object or Windows DLL, built separately
from the krb5 tree. The krb5 library will dynamically load and use a profile plugin module if it reads a module
directive at the beginning of krb5.conf, as described in profile_plugin_config.

A profile module exports a function named profile_module_init matching the signature of the pro-
file_module_init_fn type. This function accepts a residual string, which may be used to help locate the configuration
source. The function fills in a vtable and may also create a per-profile state object. If the module uses state objects, it
should implement the copy and cleanup methods to manage them.

A basic read-only profile module need only implement the get_values and free_values methods. The get_values
method accepts a null-terminated list of C string names (e.g., an array containing “libdefaults”, “clockskew”, and
NULL for the clockskew variable in the libdefaults section) and returns a null-terminated list of values, which will be
cleaned up with the free_values method when the caller is done with them.

Iterable profile modules must also define the iterator_create, iterator, iterator_free, and free_string methods. The
core krb5 code does not require profiles to be iterable, but some applications may iterate over the krb5 profile object
in order to present configuration interfaces.

Writable profile modules must also define the writable, modified, update_relation, rename_section, add_relation,
and flush methods. The core krb5 code does not require profiles to be writable, but some applications may write to the
krb5 profile in order to present configuration interfaces.

The following is an example of a very basic read-only profile module which returns a hardcoded value for the de-
fault_realm variable in libdefaults, and provides no other configuration information. (For conciseness, the example
omits code for checking the return values of malloc and strdup.)

#include <stdlib.h>
#include <string.h>
#include <profile.h>

static long
get_values(void *cbdata, const char *const *names, char ***values)
{

if (names[0] != NULL && strcmp(names[0], "libdefaults") == 0 &&
names[1] != NULL && strcmp(names[1], "default_realm") == 0) {

*values = malloc(2 * sizeof(char *));
(*values)[0] = strdup("ATHENA.MIT.EDU");
(*values)[1] = NULL;
return 0;

}
return PROF_NO_RELATION;

8 Chapter 1. Contents

Kerberos Plugin Module Developer Guide, Release 1.12

}

static void
free_values(void *cbdata, char **values)
{

char **v;

for (v = values; *v; v++)
free(*v);

free(values);
}

long
profile_module_init(const char *residual, struct profile_vtable *vtable,

void **cb_ret);

long
profile_module_init(const char *residual, struct profile_vtable *vtable,

void **cb_ret)
{

*cb_ret = NULL;
vtable->get_values = get_values;
vtable->free_values = free_values;
return 0;

}

1.11 GSSAPI mechanism interface

The GSSAPI library in MIT krb5 can load mechanism modules to augment the set of built-in mechanisms.

A mechanism module is a Unix shared object or Windows DLL, built separately from the krb5 tree. Modules are
loaded according to the /etc/gss/mech config file, as described in gssapi_plugin_config.

For the most part, a GSSAPI mechanism module exports the same functions as would a GSSAPI implementation itself,
with the same function signatures. The mechanism selection layer within the GSSAPI library (called the “mechglue”)
will dispatch calls from the application to the module if the module’s mechanism is requested. If a module does not
wish to implement a GSSAPI extension, it can simply refrain from exporting it, and the mechglue will fail gracefully
if the application calls that function.

The mechglue does not invoke a module’s gss_add_cred, gss_add_cred_from, gss_add_cred_impersonate_name,
or gss_add_cred_with_password function. A mechanism only needs to implement the “acquire” variants of those
functions.

A module does not need to coordinate its minor status codes with those of other mechanisms. If the mechglue de-
tects conflicts, it will map the mechanism’s status codes onto unique values, and then map them back again when
gss_display_status is called.

1.11.1 Interposer modules

The mechglue also supports a kind of loadable module, called an interposer module, which intercepts calls to existing
mechanisms rather than implementing a new mechanism.

An interposer module must export the symbol gss_mech_interposer with the following signature:

1.11. GSSAPI mechanism interface 9

Kerberos Plugin Module Developer Guide, Release 1.12

gss_OID_set gss_mech_interposer(gss_OID mech_type);

This function is invoked with the OID of the interposer mechanism as specified in /etc/gss/mech, and returns
a set of mechanism OIDs to be interposed. The returned OID set must have been created using the mechglue’s
gss_create_empty_oid_set and gss_add_oid_set_member functions.

An interposer module must use the prefix gssi_ for the GSSAPI functions it exports, instead of the prefix gss_.

An interposer module can link against the GSSAPI library in order to make calls to the original mechanism. To do so,
it must specify a special mechanism OID which is the concatention of the interposer’s own OID byte string and the
original mechanism’s OID byte string.

Since gss_accept_sec_context does not accept a mechanism argument, an interposer mechanism must, in order to
invoke the original mechanism’s function, acquire a credential for the concatenated OID and pass that as the veri-
fier_cred_handle parameter.

Since gss_import_name, gss_import_cred, and gss_import_sec_context do not accept mechanism parameters, the
SPI has been extended to include variants which do. This allows the interposer module to know which mechanism
should be used to interpret the token. These functions have the following signatures:

OM_uint32 gssi_import_sec_context_by_mech(OM_uint32 *minor_status,
gss_OID desired_mech, gss_buffer_t interprocess_token,
gss_ctx_id_t *context_handle);

OM_uint32 gssi_import_name_by_mech(OM_uint32 *minor_status,
gss_OID mech_type, gss_buffer_t input_name_buffer,
gss_OID input_name_type, gss_name_t output_name);

OM_uint32 gssi_import_cred_by_mech(OM_uint32 *minor_status,
gss_OID mech_type, gss_buffer_t token,
gss_cred_id_t *cred_handle);

To re-enter the original mechanism when importing tokens for the above functions, the interposer module must wrap
the mechanism token in the mechglue’s format, using the concatenated OID. The mechglue token formats are:

• For gss_import_sec_context, a four-byte OID length in big-endian order, followed by the mechanism OID,
followed by the mechanism token.

• For gss_import_name, the bytes 04 01, followed by a two-byte OID length in big-endian order, followed by
the mechanism OID, followed by the bytes 06, followed by the OID length as a single byte, followed by the
mechanism OID, followed by the mechanism token.

• For gss_import_cred, a four-byte OID length in big-endian order, followed by the mechanism OID, followed by
a four-byte token length in big-endian order, followed by the mechanism token. This sequence may be repeated
multiple times.

1.12 Internal pluggable interfaces

Following are brief discussions of pluggable interfaces which have not yet been made public. These interfaces are
functional, but the interfaces are likely to change in incompatible ways from release to release. In some cases, it may
be necessary to copy header files from the krb5 source tree to use an internal interface. Use these with care, and expect
to need to update your modules for each new release of MIT krb5.

10 Chapter 1. Contents

Kerberos Plugin Module Developer Guide, Release 1.12

1.12.1 Kerberos database interface (KDB)

A KDB module implements a database back end for KDC principal and policy information, and can also control many
aspects of KDC behavior. For a full description of the interface, see the header file <kdb.h>.

The KDB pluggable interface is often referred to as the DAL (Database Access Layer).

1.12.2 Authorization data interface (authdata)

The authdata interface allows a module to provide (from the KDC) or consume (in application servers) authorization
data of types beyond those handled by the core MIT krb5 code base. The interface is defined in the header file
<krb5/authdata_plugin.h>, which is not installed by the build.

1.12. Internal pluggable interfaces 11

Kerberos Plugin Module Developer Guide, Release 1.12

12 Chapter 1. Contents

INDEX

R
RFC

RFC 4120, 4
RFC 6113, 4

13

	Contents
	General plugin concepts
	Client preauthentication interface (clpreauth)
	KDC preauthentication interface (kdcpreauth)
	Credential cache selection interface (ccselect)
	Password quality interface (pwqual)
	KADM5 hook interface (kadm5_hook)
	Host-to-realm interface (hostrealm)
	Local authorization interface (localauth)
	Server location interface (locate)
	Configuration interface (profile)
	GSSAPI mechanism interface
	Internal pluggable interfaces

	Index

