Comedi

Comedi

The Control and Measurement Device Interface handbook
for Comedilib 0.10.1

Comedi

Copyright © 1998-2003 David Schleef

Copyright © 2001-2003, 2005, 2008 Frank Mori Hess
Copyright © 2002-2003 Herman Bruyninckx
Copyright © 2012 Bernd Porr

Copyright © 2012 Ian Abbott

This document is part of Comedilib. In the context of this document, the term "source code" as defined by the license is interpreted
as the XML source.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation, version 2.1 of the License.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Comedi

i

Contents
1 Overview 1
1.1 Whatisa ‘device driver’? e e 1
1.2 Policy vs. mechanism e e e 1
1.3 A general DAQ device driver package e 2
1.4 DAQsIgnals e 2
1.5 Device hierarchy e 3
1.6 Acquisition terminoloOgY o i e e e e e e e e e e e e e e e e 3
1.7 DAQfunctions e 4
1.8 Supporting functionality L e e e e e e e 4
2 Configuration 5
2.1 Configuration e e e e 5
2.2 Getting information aboutacard e 7
3 Writing Comedi programs 8
3.1 Your first Comedi program e e e e e e e e e e e e e e e e 8
3.2 Converting between integer data and physical units Lo 10
3.3 Your second Comedi Program b e e e e e e e e e e e e e e e 10
3.4 Asynchronous acqUiSitionot e e e e e e e e e 11
3.5 Furtherexamples L e 14
4 Acquisition and configuration functions 14
4.1 Functions for single acquiSition e e e e e e 14
4.1.1 Single digital acquiSition e 14
4.1.2 Single analog acquiSition L. e e e e e e e e 15
4.2 Instructions for multiple acquisitions L. e e e 16
4.2.1 Theinstruction data structure L. e e 16
422 Instruction XeCUtION b vt e e e e e e e 17
4.3 Instructions for configuration Lo e 17
4.4 Instruction for internal trig@ering e e e e e e e e 18
4.5 Commands for streaming acquiSition oL e e e e e e 19
4.5.1 Executingacommand L. e e e e e e e 19
452 The command data Structure e e e e e 19
453 The command trig@er €Vents e e e e 20
454 Thecommand flags 22
455 Anti-aliasing L 22
4.6 Slowly-varying inputs o e e e e e e e e e e e e e e e 22
4.7 Experimental functionality L e 23

Comedi

iv
4.7.1 Digital input combining machines 23
4.7.2 Analog filtering configuration Lo e 24
4.7.3 Analog Output Waveform Generation it e 24
474 Extended Trig@ering e e e e e 25
4.7.5 Analog Triggering e e e e e e 25
4.77.6 Bitfield Pattern Matching Extended Trigger 26
47777 Counter configuration e e e 26
4.7.8 One source plus auxiliary counter configuration 27
479 National instruments RTSI triggerbus 27
5 Comedi reference 31
5.1 Headerfiles: comedi.hand comedilib.h e 31
5.2 Constants and MACTOS ot v vt e e e e e e e e e e e e e e 31
521 CR_PACK . . . 31
522 CR_PACK_FLAGS 32
5.2.3 RANGE_LENGTH (deprecated) o i i i it e e e e e e e e 32
5.2.4 enum comedi_conversion_direction e e e 32
5.2.5 enumcomedi_io_direction e e e e e e e 33
5.2.6 enum comedi_subdevice_type e e e e e e e e 33
5.3 Datatypes and StIUCIUIES ittt e e e e e e e e e e e e 33
5.3.1 comedi_devinfo e 33
532 comedi_t e e e 34
533 samplt ... e e e e 34
534 Isampl_t . ..o e e e 34
5.3.5 comedi_trig (deprecated) 34
5.3.6 comedi_sv_t(deprecated) e e e 35
5.3.7 comedi_cmd e e 35
5.3.8 comedi_InSn e 36
539 comedi_range e e e e e e 36
5.3.10 comedi_krange 37
5.3.11 comedi_insnliSt e 37
5.3.12 comedi_polynomial_t e e e e 37
54 Functions 37
54.1 Core Functions i e e e e e e 37
5.4.1.1 comedi_close e e 37
5.4.1.2 comedi_data_read 38
54.13 comedi_data_read_n. e e 38
54.14 comedi_data_read_delayed 39

5.4.1.5 comedi_data_read _hint 39

Comedi

v
5.4.1.6 comedi_data_write e e e 39
54.1.7 comedi_do_insn L. e 40
5.4.1.8 comedi_do_insnliSt e e 40
54.1.9 comedi_fileno 41
54.1.10 comedi_find_range e 41
5.4.1.11 comedi_find_subdevice_by_type 41
54.1.12 comedi_from_phys 42
5.4.1.13 comedi_from_physical 42
54.1.14 comedi_get_board_name 43
5.4.1.15 comedi_get_driver_name L. e e e 43
54.1.16 comedi_get_maxdata e e 43
5.4.1.17 comedi_get_n_channels e 44
54.1.18 comedi_get_ n_ranges u i e e e e e e 44
5.4.1.19 comedi_get_n_subdevices L e 44
54.1.20 comedi_get_rangeo e e e e e e e e 44
5.4.1.21 comedi_get_subdevice_flags 45
5.4.1.22 comedi_get_subdevice_typeo e e e 46
5.4.1.23 comedi_get_version_code e e e e 47
5.4.1.24 comedi_internal_trigger e e e 47
5.4.1.25 comedi_lock e 48
5.4.1.26 comedi_maxdata_is_chan_specific o 48
54127 comedi_Open. e e e e e e 48
5.4.1.28 comedi_range_is_chan_specific 49
5.4.1.29 comedi_set_global_oor_behavior L 49
54.1.30 comedi_to_phys e e 49
5.4.1.31 comedi_to_physical 50
5.4.1.32 comedi_unlock e 50

5.4.2 Asynchronous commands e e e e e e e 51
5.42.1 comedi_cancel 51
5422 comedi_command e 51
5.423 comedi_command teSt e e e 51
5424 comedi_get_buffer_contents. 52
54.2.5 comedi_get buffer_offset 52
54.2.6 comedi_get _buffer_size 53
54.277 comedi_get_cmd_generic_timed 53
5428 comedi_get_cmd_src_mask oL 53
54.29 comedi_get_max_buffer_size L 54
5.4.2.10 comedi_get_read_subdevice L. e 54
54.2.11 comedi_get_write_subdevice 54

Comedi

vi
5.4.2.12 comedi_mark buffer read 55
5.4.2.13 comedi_mark_buffer_written oL o 55
54214 comedi_poll 55
5.4.2.15 comedi_set buffer size L 56
5.4.2.16 comedi_set_max_buffer size 56
5.4.3 Calibration e 57
54.3.1 comedi_apply_calibration 57
5.4.3.2 comedi_apply_parsed_calibrationo 58
54.3.3 comedi_cleanup_calibrationo 58
5.4.34 comedi_get_default_calibration_path L oL 58
5.4.3.5 comedi_get_hardcal_converter Lo 59
5.4.3.6 comedi_get_softcal_converter 60
5.4.3.7 comedi_parse_calibration_file oL Lo 60
544 Digital O . . . oL e e 61
5.4.4.1 comedi_dio bitfield2 61
5442 comedi_dio_config 61
5443 comedi_dio_get_config 62
5444 comedi_dio_read 62
5.4.45 comedi_dio Write e e e 63
5.4.5 EBrrorreporting L. e e e e e e e e e e e e e 63
5.45.1 comedi_errno e 63
5452 comedi_loglevel L 64
5453 comedi_perror e e e 64
5454 comedi_Strerror L. e e e e e e 65
5.4.6 EXIENSIONS it e e e e e 65
54.6.1 comedi_arm e e e 65
54.6.2 comedi_get _clock_source 65
5.4.6.3 comedi_get_gate_SOUICE v v v v v v v it e e e e e e e e e 66
5.4.6.4 comedi_get_hardware_buffer_size 67
5.4.6.5 comedi_get_Touting e e e e e e 67
5.4.6.6 comedi TeSet e 67
5.4.6.7 comedi_set_clock_source L. 68
5.4.6.8 comedi_set_counter mode 69
54.6.9 comedi_set filter L 69
5.4.6.10 comedi_set_gate_SOUICEe v v v v vt i e e e e e 70
5.4.6.11 comedi_set_other_source e 70
5.4.6.12 comedi_set_routing e e e e 71
5477 Deprecated functions L. e e e e e e e e e e e 71
5.4.7.1 comedi_dio bitfield L. 71

Comedi

vii
54.7.2 comedi_get_timer e e e e 72
5473 comedi_sv_init e e 72
5474 comedi_SV_MEASUIE v v v v e e e e e e e e e e e e 72
54775 comedi_sv_update L. L e e e 73
5.4.7.6 comedi_timed_Ichan e 73
5477 comedi_trig@er. e e e 74
5.5 Kerneldrivers e e 74
5.5.1 8255 --generic 8255 support L 74
5.5.2 acl7225b -- Adlink NuDAQ ACL-7225b & compatibles 75
5.5.3 adl_pci6208 -- ADLink PCI-6208A 75
5.5.4 adl_pci7230 -- Driver for the Adlink PCI-7230 32 ch. isolated digitalioboard 75
5.5.5 adl_pci7296 -- Driver for the Adlink PCI-7296 96 ch. digitalioboard 76
5.5.6 adl_pci7432 -- Driver for the Adlink PCI-7432 64 ch. isolated digitalioboard 76
5.5.7 adl_pci8164 -- Driver for the Adlink PCI-8164 4 Axes Motion Control board 76
5.5.8 adl_pci9lll -- Adlink PCI-O111HR o o 77
5.59 adl_pci9118 -- Adlink PCI-9118DG, PCI-9118HG, PCI-9118HR 77
5.5.10 adql2b -- driver for MicroAxial ADQI12-B data acquisition and controlcard 78
5.5.11 adv_pcil710 -- Advantech PCI-1710, PCI-1710HG, PCI-1711, PCI-1713, Advantech PCI-1720, PCI-
0 79
5.5.12 adv_pcil723 -- Advantech PCI-1723 e 80
5.5.13 adv_pci_dio -- Advantech PCI-1730, PCI-1733, PCI-1734, PCI-1735U, PCI-1736UP, PCI-1750, PCI-
1751, PCI-1752, PCI-1753/E, PCI-1754, PCI-1756, PCI-1762 81
5.5.14 aio_aiol2_8 -- Acces I/O Products PC-104 AIO12-8 Analogl/OBoard 81
5.5.15 aio_iiro_16 -- Acces I/O Products PC-104 IIRO16 Relay And Isolated Input Board 82
5.5.16 amplc_dio200 -- Amplicon 200 Series Digital /O L. 82
5.5.17 amplc_pc236 -- Amplicon PC36AT, PCI236 i i 85
5.5.18 amplc_pc263 -- Amplicon PC263, PCI263 86
5.5.19 amplc_pci224 -- Amplicon PCI224, PCI234 e 86
5.5.20 amplc_pci230 -- Amplicon PCI230, PCI260 Multifunction /O boards 88
5.5.21 c6xdigio -- Mechatronic Systems Inc. C6x_DIGIO DSP daughtercard 90
5.5.22 cb_das16_cs -- Computer Boards PC-CARD DAS16/16 91
5.5.23 cb_pcidas64 -- MeasurementComputing PCI-DAS64xx, 60XX, and 4020 series with the PLX 9080 PCI
controller L e 91
5.5.24 cb_pcidas -- MeasurementComputing PCI-DAS series with the AMCC S5933 PCI controller 92
5.5.25 cb_pcidda -- MeasurementComputing PCI-DDA series 93
5.5.26 cb_pcidio -- ComputerBoards’ DIO boards with PCl interface 93
5.5.27 cb_pcimdas -- Measurement Computing PCI Migration series boards 94
5.5.28 cb_pcimdda -- Measurement Computing PCIM-DDAO06-16 94
5.5.29 comedi_bond -- A driver to "bond’ (merge) multiple subdevices from multiple devices together as one. . 95
5.5.30 comedi_parport -- Standard PC parallel port 96

Comedi

viii
5.5.31 comedi_rt_timer -- Command emulator using real-time taskso L. 97
5.5.32 comedi_test -- generates fake waveforms oL L L 97
5.5.33 contec_pci_dio -- Contec PIO1616L digital /Oboard 98
5.5.34 dagboard2000 -- IOTech DAQBoard/2000 e 98
5.5.35 das08 -- DAS-08 compatible boards L 98
5.5.36 dasO8_cs -- DAS-08 PCMCIA boards 99
5.5.37 dasl6-- DAS16 compatible boards 100
5.538 dasléml -- CIO-DASIO/MIo 100
5.5.39 das1800 -- Keithley Metrabyte DAS1800 (& compatibles) 101
5.5.40 das6402 -- Keithley Metrabyte DAS6402 (& compatibles) 102
5.5.41 das800 -- Keithley Metrabyte DAS800 (& compatibles) 102
5.5.42 dmm32at -- Diamond Systems mm32atdriver. e 102
5.5.43 dt2801 -- Data Translation DT2801 series and DTO1-EZ 103
5.5.44 dt2811 -- Data Translation DT2811 103
5.5.45 dt2814 -- Data Translation DT2814 e 104
5.5.46 dt2815 -- Data Translation DT2815 104
5.5.47 dt2817 -- Data Translation DT2817 105
5.5.48 dt282x -- Data Translation DT2821 series (including DT-EZ) 106
5.5.49 dt3000 -- Data Translation DT3000 series o v ittt 106
5.5.50 dt9812 -- Data Translation DT9812 USB module 107
5.5.51 512 —-unknowno e 107
5.5.52 gsc_hpdi -- General Standards Corporation High Speed Parallel Digital Interface rs485 boards 108
5.5.53 dcp_multi -- Inova ICP_MULTT e 108
5.5.54 ii_pci20kc -- Intelligent Instruments PCI-20001C carrierboard 109
5.5.55 jr3_pci-- JR3/PClI force sensor board 109
5.5.56 ke_counter -- Driver for Kolter Electronic Counter Card 110
5.5.57 me4000 -- Meilhaus ME-4000 series boards 110
5.5.58 me_daq -- Meilhaus PCI data acquisitioncards 111
5.5.59 mpc624 -- Micro/sys MPC-624 PC/104 board 111
5.5.60 mpc8260cpm -- MPC8260 CPM module generic digital I/Olines 112
5.5.61 multiq3 -- Quanser Consulting MultiQ-3 112
5.5.62 ni_6527 -- National Instruments 6527 112
5.5.63 ni_65xx -- National Instruments 65xx staticdioboards, 113
5.5.64 ni_660x -- National Instruments 660x counter/timer boards 113
5.5.65 ni_670x -- National Instruments 670X 114
5.5.66 ni_at _a2150 -- National Instruments AT-A2150 114
5.5.67 ni_at_ao -- National Instruments AT-AO-6/10 115
5.5.68 ni_atmiol6d -- National Instruments AT-MIO-16D 115
5.5.69 ni_atmio -- National Instruments AT-MIO-E series v .. 115

Comedi

ix

5.5.70 ni_daq_700 -- National Instruments PCMCIA DAQCard-700 DIOonly 116
5.5.71 ni_daq_dio24 -- National Instruments PCMCIA DAQ-Card DIO-24 117
5.5.72 ni_labpc -- National Instruments Lab-PC (& compatibles) 117
5.5.73 ni_labpc_cs -- National Instruments Lab-PC (& compatibles) 118
5.5.74 ni_mio_cs -- National Instruments DAQCard Eseries 118
5.5.75 ni_pcidio -- National Instruments PCI-DIO32HS, PCI-DIO96, PCI-6533, PCI-6503 119
5.5.76 ni_pcimio -- National Instruments PCI-MIO-E series and M series (all boards) 120
5.5.77 ni_tio -- National Instruments general purpose counters 121
5.5.78 ni_tiocmd -- National Instruments general purpose counters command support 122
5.5.79 pcl711 -- Advantech PCL-711 and 711b, ADLink ACL-8112 122
5.5.80 pcl724 -- Advantech PCL-724, PCL-722, PCL-731 ADLink ACL-7122, ACL-7124, PET-48DIO 123
5.5.81 pcl725 -- Advantech PCL-725 (& compatibles) 123
5.5.82 pcl726 -- Advantech PCL-726 & compatibles 123
5.5.83 pcl730 -- Advantech PCL-730 (& compatibles) 124
5.5.84 pcl812 -- Advantech PCL-812/PG, PCL-813/B, ADLink ACL-8112DG/HG/PG, ACL-8113, ACL-8216,

ICP DAS A-821PGH/PGL/PGL-NDA, A-822PGH/PGL, A-823PGH/PGL, A-826PG, ICP DAS ISO-813 124
5.5.85 pcl816 -- Advantech PCL-816 cards, PCL-814 126
5.5.86 pcl818 -- Advantech PCL-818 cards, PCL-718 127
5.5.87 pcm3724 -- Advantech PCM-3724 oL 128
5.5.88 pecm3730--PCM3730 129
5.5.89 pcmad -- Winsystems PCM-A/D12, PCM-A/D16 e 129
5.590 pcmdal2 -- A driver for the Winsystems PCM-D/A-12 130
5.591 pcmmio -- A driver for the PCM-MIO multifunctionboard 130
5.5.92 pcmuio -- A driver for the PCM-UIO48A and PCM-UIO96A boards from Winsystems. 131
5.5.93 poc -- Generic driver for very simple deviceso oL o 132
5.5.94 quatech_dagp_cs -- Quatech DAQP PCMCIA data capturecards 133
5.5.95 r1td520 -- Real Time Devices PCI4520/DM7520 i 133
5.5.96 rti800 -- Analog Devices RTI-800/815 e 133
5.597 rti802 -- Analog Devices RTI-802 134
5.5.98 526 -- Sensoray 526 drivero e e 134
5.5.99 626 -- Sensoray 626 Ariver e e e e e e e e e e 135
5.5.100 serial2002 -- Driver for serial connected hardware 136
5.5.101 skel -- Skeleton driver, an example for driver writers 136
5.5.102 ssv_dnp -- SSV Embedded Systems DIL/Net-PC 136
5.5.103 unioxx5 -- Driver for Fastwel UNIOxx-5 (analog and digital i/o) boards. 136
5.5.104 usbdux -- Driver for USB-DUX-D of INCITE Technology Limited 137
5.5.105 usbduxfast -- Driver for USB-DUX-FAST of INCITE Technology Limited 138
5.5.106 usbduxsigma -- Driver for USB-DUX-SIGMA of INCITE Technology Limited 139

Comedi

X
6 Writing a Comedi driver 140
6.1 Communication user-space — kernel-space L. e 140

6.2 Generic functionality L L e e e e 141
6.2.1 Data struCtures o it e e e e e e e e e e 141

6.2.1.1 comedi_lrange 141

6.2.1.2 comedi_subdevice L 142

6.2.1.3 comedi_deviCe e e e e e 142

6.2.1.4 comedi_async e e 143

6.2.1.5 comedi_driver L e e e e e e 144

6.2.2 Generic driver support functions L. L L e e 144

6.3 Board-specific functionality e 145

6.4 Callbacks, events and Interrupts e e e e e e e e 146

6.5 Devicedrivercaveats L e e e e e e 146

6.6 Integrating the driver in the Comedi library L 147

7 Glossary 147

Comedi
Xi

List of Figures

1 Asynchronous Acquisition Sequence L. e e e e e e 4

Abstract

Comedi is a free software project to interface digital acquisition (DAQ) cards. It is the combination of three complementary
software items: (i) a generic, device-independent API, (ii) a collection of Linux kernel modules that implement this API for a
wide range of cards, and (iii) a Linux user space library with a developer-oriented programming interface to configure and use
the cards.

http://www.comedi.org

Comedi
1/148

1 Overview

Comedi is a free software project that develops drivers, tools, and libraries for various forms of data acquisition: reading and
writing of analog signals; reading and writing of digital inputs/outputs; pulse and frequency counting; pulse generation; reading
encoders; etc. The source code is distributed in two main packages, comedi and comedilib:

* Comedi is a collection of drivers for a variety of common data acquisition plug-in boards (which are called ‘devices’ in Comedi
terminology). The drivers are implemented as the combination of (i) one single core Linux kernel module (called ‘comedi’)
providing common functionality, and (ii) individual low-level driver modules for each device.

* Comedilib is a separately distributed package containing a user-space library that provides a developer-friendly interface
to the Comedi devices. Included in the Comedilib package are documentation, configuration and calibration utilities, and
demonstration programs.

* Kcomedilib is a Linux kernel module (distributed with the comedi package) that provides the same interface as comedilib
in kernel space, and suitable for use by real-time kernel modules. It is effectively a ‘kernel library’ for using Comedi from
real-time tasks.

Comedi works with standard Linux kernels, but also with its real-time extensions RTAI and RTLinux/GPL.

This section gives a high-level introduction to which functionality you can expect from the software. More technical details and
programming examples are given in the following sections of this document.

1.1 What is a ‘device driver’?

A device driver is a piece of software that interfaces a particular piece of hardware: a printer, a sound card, a motor drive, etc.
It translates the primitive, device-dependent commands with which the hardware manufacturer allows you to configure, read and
write the electronics of the hardware interface into more abstract and generic function calls and data structures for the application
programmer.

David Schleef started the Comedi project to put a generic interface on top of lots of different cards for measurement and control
purposes. This type of cards are often called data acquisition (or DAQ) cards.

Analog input and output cards were the first goal of the project, but now Comedi also provides a device independent interface to
digital input and output cards, and counter and timer cards (including encoders, pulse generators, frequency and pulse timers,
etc.).

Schleef designed a structure which is a balance between modularity and complexity: it’s fairly easy to integrate a new card
because most of the infrastructure part of other, similar drivers can be reused, and learning the generic and hence somewhat
‘heavier’ Comedi API doesn’t scare away new contributors from integrating their drivers into the Comedi framework.

1.2 Policy vs. mechanism

Device drivers are often written by application programmers, that have only their particular application in mind; especially in
real-time applications. For example, one writes a driver for the parallel port, because one wants to use it to generate pulses that
drive a stepper motor. This approach often leads to device drivers that depend too much on that particular application, and are
not general enough to be re-used for other applications. One golden rule for the device driver writer is to separate mechanism
and policy:

¢ Mechanism. The mechanism part of the device interface is a faithful representation of the bare functionality of the device,
independent of what part of the functionality an application will use.

* Policy. Once a device driver offers a software interface to the mechanism of the device, an application writer can use this
mechanism interface to use the device in one particular fashion. That is, some of the data stuctures offered by the mechanism
are interpreted in specific physical units, or some of them are taken together because this composition is relevant for the
application. For example, a analog output card can be used to generate voltages that are the inputs for the electronic drivers of
the motors of a robot; these voltages can be interpreted as setpoints for the desired velocity of these motors, and six of them
are taken together to steer one particular robot with six-degrees of freedom. Some of the other outputs of the same physical
device can be used by another application program, for example to generate a sine wave that drives a vibration shaker.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.rtai.org
http://www.rtlinux-gpl.org/
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
2/148

So, Comedi focuses only on the mechanism part of DAQ interfacing. The project does not provide the policy parts, such as
Graphical User Interfaces to program and display acquisitions, signal processing libraries, or control algorithms.

1.3 A general DAQ device driver package

From the point of view of application developers, there are many reasons to welcome the standardization of the API and the
architectural structure of DAQ software:

API: devices that offer similar functionalities, should have the same software interface, and their differences should be coped
with by parameterizing the interfaces, not by changing the interface for each new device in the family. However, the DAQ
manufacturers have never been able (or willing) to come up with such a standardization effort themselves.

Architectural structure: many electronic interfaces have more than one layer of functionality between the hardware and
the operating system, and the device driver code should reflect this fact. For example, many different interface cards use the
same PCI driver chips, or use the parallel port as an intermediate means to connect to the hardware device. Hence, ‘lower-
level’ device drivers for these PCI chips and parallel ports allow for an increased modularity and re-useability of the software.
Finding the generic similarities and structure among different cards helps in developing device drivers faster and with better
documentation.

In the case of Linux as the host operating system, device driver writers must keep the following issues in mind:

Kernel space vs. User space. The Linux operating system has two levels that require different programming approaches. Only
privileged processes can run in the kernel, where they have access to all hardware and to all kernel data structures. Normal
application programs can run their processes only in user space, where these processes are shielded from each other, and from
direct access to hardware and to critical data of the operating system; these user space programs execute much of the operating
system’s functionality through system calls.

Device drivers typically must access specific addresses on the bus, and hence must (at least partially) run in kernel space. Nor-
mal users program against the API of the Comedilib user-space library. Comedilib then handles the necessary communication
with the Comedi modules running in kernel-space.

Device files or device file system. Users who write an application for a particular device, must link their application to that
device’s device driver. Part of this device driver, however, runs in kernel space, and the user application in user space. So, the
operating system provides an interface between both. In Linux or Unix, these interfaces are in the form of ‘files’ in the /dev
directory. Each device supported in the kernel may be representated as such a user space device file, and its functionality can
may be accessed by classical Unix file I/O: open(), close(), read(), write(), ioct1(), and mmap().

/proc interface. Linux (and some other UNIX operating systems) offer a file-like interface to attached devices (and other
OS-related information) via the /proc directories. These ‘files’ do not really exist, but it gives a familiar interface to users,
with which they can inspect the current status of each device.

Direct Memory Access (DMA) vs. Programmed Input/Output (PIO). Almost all devices can be interfaced in PIO mode:
the processor is responsible for directly accessing the bus addresses allocated to the device whenever it needs to read or write
data. Some devices also allow DMA: the device and the memory ‘talk’ to each other directly, without needing the processor.
DMA is a feature of the bus, not of the operating system (which, of course, has to support its processes to use the feature).

Real-time vs. non real-time. If the device is to be used in a RTLinux/GPL or RTAI application, there are a few extra
requirements, because not all system calls are available in the kernel of the real-time operating systems RTLinux/GPL or
RTAI The APIs of RTAI and RTLinux/Free differ in different ways, so the Comedi developers have spent a lot of efforts to
make generic wrappers to the required RTOS primitives: timers, memory allocation, registration of interrupt handlers, etc.

1.4 DAQ signals

The cards supported in Comedi have one or more of the following signals: analog input, analog output, digital input, digital
output, counters input, counter output, pulse input, pulse output:

* Digital signals are conceptually quite simple, and don’t need much configuration: the number of channels, their addresses on
the bus, and their input or output direction.

http://www.comedi.org
http://www.rtlinux-gpl.org/
http://www.rtai.org
http://www.rtlinux-gpl.org/
http://www.rtai.org
http://www.comedi.org
http://www.comedi.org

Comedi
3/148

» Analog signals are a bit more complicated. Typically, an analog acquisition channel can be programmed to generate or read a
voltage between a lower and an upper threshold (e.g., —10V and +10V). The card’s electronics may also allow automatically
sampling of a set of channels in a prescribed order.

 Pulse-based signals (counters, timers, encoders, etc.) are conceptually only a bit more complex than digital inputs and outputs,
in that they only add some timing specifications to the signal. Comedi has still only a limited number of drivers for this kind of
signals, although most of the necessary API and support functionality is available.

In addition to these ‘real’ DAQ functions, Comedi also offers basic timer access.

1.5 Device hierarchy

Comedi organizes all hardware according to the following hierarchy:

* Channel: the lowest-level hardware component, that represents the properties of one single data channel; for example, an
analog input, or a digital output.

* Subdevice: a set of functionally identical channels. For example, a set of 16 identical analog inputs.

* Device: a set of subdevices that are physically implemented on the same interface card; in other words, the interface card
itself. For example, the National Instruments 6024E device has a subdevice with 16 analog input channels, another
subdevice with two analog output channels, and a third subdevice with eight digital inputs/outputs.

Some interface cards have extra components that don’t fit in the above-mentioned classification, such as an EEPROM to store
configuration and board parameters, or calibration inputs. These special components are also classified as ‘sub-devices’ in
Comedi.

1.6 Acquisition terminology

This Section introduces the terminology that this document uses when talking about Comedi ‘commands’, which are streaming
asyncronous acquisitions. Figure 1 depicts a typical acquisition sequence when running a command:

» The sequence has a start and an end. At both sides, the software and the hardware need some finite initialization or settling
time.

» The sequence consists of a number of identically repeated scans. This is where the actual data acquisitions are taking place:
data is read from the card, or written to it. Each scan also has a begin, an end, and a finite setup time. Possibly, there is also a
settling time (‘scan delay’) at the end of a scan.

So, the hardware puts a lower boundary (the scan interval) on the minimum time needed to complete a full scan.

» Each scan contains one or more conversions on particular channels, i.e., the AD/DA converter is activated on each of the
programmed channels, and produces a sample, again in a finite conversion time, starting from the moment in time called the
sample time in Figure 1 (sometimes also called the ‘timestamp’), and caused by a triggering event, called convert.

In addition, some hardware has limits on the minimum conversion interval it can achieve, i.e., the minimum time it needs be-
tween subsequent conversions. For example, some A/D hardware must multiplex the conversions from different input channels
onto one single A/D converter. Thus the conversions are done serially in time (as shown in Figure 1). Other cards have the
hardware to do two or more acquisitions in parallel, and can perform all the conversions in a scan simultaneously. The begin
of each conversion is ‘triggered’ by some internally or externally generated pulse, e.g., a timer.

In general, not only the start of a conversion is triggered, but also the start of a scan and of a sequence. Comedi provides the API
to configure what triggering source one wants to use in each case. The API also allows you to specify the channel list, i.e., the
sequence of channels that needs to be acquired during each scan.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
4/148

< acquisition sequence

e
” scan N . sCcan | scans
convert convert

AlJAC
conversions

m conversion scan [setup conversion scan
time interval delay [time time delay time delay
Cinitializa- | scan interval i scan interval " [~ scan interval termina- |
tion time tion time

Figure courtesy of Kurt Miiller.

Figure 1: Asynchronous Acquisition Sequence

1.7 DAQ functions

The basic data acquisition functionalities that Comedi offers work on channels, or sets of channels:

* Single acquisition: Comedi has function calls to synchronously perform one single data acquisition on a specified channel:
comedi_data_read(), comedi_data_read_delayed(), comedi_data_write(), comedi_dio_read(), com—
edi_dio_write(). In addition, the lower-level comedi_do_insn() function can be used to perform an acquisition.

‘Synchronous’ means that the calling process blocks until the data acquisition has finished.

e Mutiple synchronous acquisition: The comedi_data_read_n() function performs (possibly multiple) data acquisitions
on a specified channel, in a synchronous way. So, the function call blocks until the whole acquisition has finished. The precise
timing between the acquisitions is not hardware controlled.

In addition, comedi_do_insnlist () () executes a list of instructions in one single (blocking, synchronous) call, such that
the overhead involved in configuring each individual acquisition is reduced.

* Command: a command is sequence of scans, for which conditions have been specified that determine when the acquisition
will start and stop, and when each conversion in each scan should occur. A comedi_command() function call sets up the
aynchronous data acquisition: as soon as the command information has been filled in, the comedi_ command() function call
returns. The hardware of the card takes care of the sequencing and timing of the data acquisition as it proceeds.

1.8 Supporting functionality

The command functionality cannot be offered by DAQ cards that lack the hardware to autonomously sequence a series of scans.
For these cards, the command functionality may be provided in software. And because of the quite strict real-time requirements
for a command acquisition, a real-time operating system should be used to translate the command specification into a correctly
timed sequence of instructions. Comedi provides the comedi_rt_t imer() kernel module to support such a virtual command
execution under RTAI or RTLinux/Free.

Comedi not only offers the API to access the functionality of the cards, but also to query the capabilities of the installed devices.
That is, a user process can find out what channels are available, and what their physical parameters are (range, direction of
input/output, etc.).

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
5/148

Buffering is another important aspect of device drivers: the acquired data has to be stored in such buffers, because, in general,
the application program cannot guarantee to always be ready to provide or accept data as soon as the interface board wants to do
a read or write operation. Comedi provides internal buffers for data being streamed to/from devices via Comedi commands. The
buffer sizes are user-adjustable.

2 Configuration

This section assumes that you have successfully compiled and installed the Comedi software, that your hardware device is in
your computer, and that you know the relevant details about it, i.e., what kind of card it is, any jumper settings related to input
ranges, the I/O base address and IRQ for old non-plug-n-play boards, etc.

2.1 Configuration

The good news is: on most systems PCI and USB based boards are configured automatically. The kernel will detect your data
acquisition devices, will load the appropriate kernel drivers and will create the /dev/comedi entries.

bpl@bpl-x61:~/sandbox/comedilib$ 1ls -1 /dev/comediOx

crw—rw———— 1 root iocard 98, 0 2012-04-26 23:41 /dev/comediO
crw-rw———— 1 root iocard 98, 48 2012-04-26 23:41 /dev/comediO_subd0
crw—-rw———— 1 root iocard 98, 49 2012-04-26 23:41 /dev/comediO_subdl

Usually these devices belong to the group iocard as shown here. The only action you need to take is to become member of
this group and then the Comedi device is ready to be used.

There are a few PCI drivers that for one reason or another do not support auto-configuration, either because there is more
than one variant of a board sharing the same PCI device ID (e.g. Advantech PCI-1710 and PCI-1710HG), or because some
configuration options are needed (e.g. Amplicon PCI224 and PCI234) or for some other reason. It is also possible to disable
auto-configuration when loading the comedi kernel module. In these cases devices need to be configured manually as for ISA
cards. Conversely, most Comedi drivers supplied with the kernel sources that support auto-configuration may no longer support
manual configuration.

By default, the comedi kernel module does not reserve any devices for manual configuration so manual configuration will fail.
To allow devices to be configured manually, set the comedi_num_Ilegacy_minors module parameter to the number of devices
to reserve for manual configuration when loading the comedi kernel module. If using modprobe, this can be set automatically
by editing /etc/modprobe.conf or /etc/modprobe.d/comedi.conf (depending on the system) to include the line:

options comedi comedi_num_ legacy_minors=4

The number 4 in the above line may be adjusted to increase or decrease the number of devices to be reserved for manual
configuration.

Old ISA based cards need to be manually configured which is explained here. You only need to read on here if you have one of
these old cards. On embedded systems it might also be necessary to load the driver and then to configure the boards manually.
In general manual configuration is done by running the comedi_config command (as root). Here is an example of how to use
the command (perhaps you should read its man page now):

comedi_config /dev/comediO labpc-1200 0x260,3

This command says that the ‘file’ /dev/comedi0 can be used to access the Comedi device that uses the I1abpc-1200 board,
and that you give it two run-time parameters (0x260 and 3). More parameters are possible, and their meaning is driver depen-
dant.

This tutorial goes through the process of configuring Comedi for two devices, a National Instruments AT-MIO-16E-10, and a
Data Translation DT2821-F-8DI.

The NI board is plug-and-play. The current ni_atmio driver has kernel-level ISAPNP support, which is used by default if you
do not specify a base address. So you could simply run comedi_config as

comedi_config /dev/comedi0 ni_atmio

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
6/148

For the preceding comedi_config command to succeed, the ni_atmio kernel module must be loaded first. For plug-n-play
boards on modern kernels, the appropriate comedi kernel modules should get loaded automatically when your computer is
booted. The modprobe command can be used to manually load/unload kernel modules, and Ismod will list all the currently
loaded modules.

For the Data Translation board, you need to know how the board’s jumpers are configured in order to specify the correct
comedi_config parameters. These parameters for the board are given in the kernel drivers section about the dt282x driver.
The card discussed here is a DT2821-f-8di. The entry for the dt282x driver tells you that the comedi_config parameters give
the driver the I/O base, IRQ, DMA 1, DMA 2, and in addition the states of the differential/single-ended and unipolar/bipolar
jumpers:

DT282X CONFIGURATION OPTIONS:

¢ [0] - I/O port base address

* [1]1-1RQ

* [2]-DMA 1

* [3]-DMA 2

* [4] - Al jumpered for O=single ended, 1=differential

* [5] - Al jumpered for O=straight binary, 1=2’s complement

* [6] - AO 0 jumpered for O=straight binary, 1=2"s complement

* [7] - AO 1 jumpered for O=straight binary, 1=2"s complement

* [8] - Al jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5]

* [9] - AO 0 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5], 4=[-2.5,2.5]
* [10]- AO 1 jumpered for 0=[-10,10]V, 1=[0,10], 2=[-5,5], 3=[0,5], 4=[-2.5,2.5]

So, the appropriate options list might be:

0x200,4,0,0,1,1,1,1,0,2,2

and the full configuration command is:

comedi_config /dev/comedil dt2821-f-8di 0x200,4,0,0,1,1,1,1,0,2,2

Setting the DMA channels to 0 disables the use of DMA.

So now you have your boards configured correctly. Since data acquisition boards are not typically well-engineered, Comedi
sometimes can’t figure out if an old non-plug-n-play board is actually in the computer and at the base address you specified. If it
can’t, it assumes you are right. Both of these boards are well-made, so Comedi will give an error message if it can’t find them.
The Comedi kernel module, since it is a part of the kernel, prints messages to the kernel logs, which you can access through the
command dmesg or the file /var/log/messages. Here is a configuration failure (from dmesg):

comediO: ni_atmio: 0x0200 can’t find board

When it does work, you get:

comediO: ni_atmio: 0x0260 at-mio-16e-10 (irg = 3)

Note that it also correctly identified the board.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
7/148

2.2 Getting information about a card

So now that you have Comedi talking to the hardware, try to talk to Comedi. Call the command comedi_board_info, which
provides information about each subdevice on the board. Here’s part of the output for the USB-DUX sigma board (which is on
/dev/comedi0), as a result of the command comedi_board_info -v.

overall info:
version code: 0x00074c
driver name: usbduxsigma
board name: usbduxsigma
number of subdevices: 4
subdevice 0:
type: 1 (analog input)
flags: 0x10119000
SDF_CMD_READ:can do asynchronous input commands
SDF_READABLE: subdevice can be read
SDF_GROUND:can do aref=ground
SDF_LSAMPL:subdevice uses 32-bit samples for commands
number of channels: 16
max data value: 16777215
ranges:
all chans: [-1.325 V,1.325 V]
command :
start: now|int
scan_begin: timer
convert: now
scan_end: count
stop: none|count
command structure filled with probe_cmd_generic_timed for 16 channels:
start: now O
scan_begin: timer 1000000
scan_begin_src = TRIG_TIMER:
The sampling rate is defined per scan
meaning all channels are sampled at
the same time. The maximum sampling rate is f=1000 Hz
convert: now O
scan_end: count 16
stop: count 2
subdevice 1:
type: 2 (analog output)
flags: 0x00125000
SDF_CMD_WRITE:can do asynchronous output commands
SDF_WRITABLE:subdevice can be written
SDF_GROUND:can do aref=ground
number of channels: 4
max data value: 255
ranges:
all chans: [0 V,2.5 V]
command:
start: now|int
scan_begin: timer
convert: now
scan_end: count
stop: none|count
command structure filled with probe_cmd_generic_timed for 4 channels:
start: now O
scan_begin: timer 1000000
scan_begin_src = TRIG_TIMER:
The sampling rate is defined per scan
meaning all channels are sampled at
the same time. The maximum sampling rate is £=1000 Hz
convert: now 0

http://www.comedi.org
http://www.comedi.org

Comedi
8/148

scan_end: count 4
stop: count 2
subdevice 2:
type: 5 (digital I/O)
flags: 0x00030000
SDF_READABLE: subdevice can be read
SDF_WRITABLE:subdevice can be written
number of channels: 24
max data value: 1
ranges:
all chans: [0 V,5 V]
command:
not supported
subdevice 3:
type: 12 (pwm)
flags: 0x00020100
SDF_MODE1l:can do mode 1
SDF_WRITABLE:subdevice can be written
number of channels: 8
max data value: 512
ranges:
all chans: [0,1]
command:
not supported

This board has four subdevices. Devices are separated into subdevices that each have a distinct purpose; e.g., analog input, analog
output, digital input/output.

Here’s the information from Comedi’s /proc/comedi file, which indicates what drivers are loaded and which boards are
configured:

cat /proc/comedi

comedi version 0.7.76

format string: "%2d: %$-20s %-20s %4d",i,driver_name,board_name,n_subdevices
0: usbduxsigma usbduxsigma 4
usbduxfast:

usbduxfast
usbduxsigma:

usbduxsigma

This documentation feature currently returns the driver name, the device name, and the number of subdevices. Following those
lines are a list of the Comedi kernel driver modules currently loaded, each followed by a list of the board names it recognizes
(names that can be used with comedi_config).

3 Writing Comedi programs

This section describes how Comedi can be used in an application, to communicate data with a set of Comedi devices. Section 4
gives more details about the various acquisition functions with which the application programmer can perform data acquisition
in Comedi.

Also don’t forget to take a good look at the demo directory of the Comedilib source code. It contains lots of examples for the
basic functionalities of Comedi.

3.1 Your first Comedi program

This example requires a card that has analog or digital input. This progam opens the device, gets the data, and prints it out:

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi

9/148

L I I

#1i
#i

in
in
in
in

in

{

/*
Tutorial example #1

Part of Comedilib
Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>

This file may be freely modified, distributed, and combined with
other software, as long as proper attribution is given in the
source code.

/

nclude <stdio.h> /* for printf () =*/

nclude <comedilib.h>

t subdev = 0; /+ change this to your input subdevice =/
t chan = 0; /* change this to your channel x*/

t range = 0; /* more on this later =*/

t aref = AREF_GROUND; /x more on this later =*/

t main (int argc,char xargv[])

comedi_t =*it;
int chan = 0;
lsampl_t data;
int retval;

it = comedi_open ("/dev/comediO") ;
if (it == NULL)
{
comedi_perror ("comedi_open") ;
return -1;

retval = comedi_data_read(it, subdev, chan, range, aref, &data);
if (retval < 0)
{

comedi_perror ("comedi_data_read");

return -1;

printf ("$d\n", data);

return 0;

The source code file for the above program can be found in Comedilib, at demo/tut1.c. You can compile the program using

cc tutl.c -lcomedi -o tutl

The (comedi_open) call can only be successful if the comedi 0 device file is configured with a valid Comedi driver. Section 2.1
explains how this driver is linked to the ‘device file’.

The range variable tells Comedi which gain to use when measuring an analog voltage. Since we don’t know (yet) which numbers
are valid, or what each means, we’ll use 0, because it won’t cause errors. Likewise with aref, which determines the analog
reference used.

http://www.comedi.org
http://www.comedi.org

Comedi
10/148

3.2 Converting between integer data and physical units

If you selected an analog input subdevice, you probably noticed that the output of tutl is an unsigned number, for example
between 0 and 65535 for a 16 bit analog input. Comedi samples are unsigned, with O representing the lowest voltage of the
ADC, and a hardware-dependent maximum value representing the highest voltage. Comedi compensates for anything else the
manual for your device says (for example, many boards represent bipolar analog input voltages as signed integers). However,
you probably prefer to have this number translated to a voltage. Naturally, as a good programmer, your first question is: ‘How
do I do this in a device-independent manner?’

The functions comedi_to_physical(), comedi_to_phys(), comedi_from_physical() and comedi_from_ph-
vs() are used to convert between Comedi’s integer data and floating point numbers corresponding to physical values (voltages,
etc.).

3.3 Your second Comedi program

Actually, this is the first Comedi program again, except we’ve added code to convert the integer data value to physical units.

/ x

* Tutorial example #2

* Part of Comedilib

*

* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>

* Copyright (c) 2008 Frank Mori Hess <fmhess@users.sourceforge.net>
*

* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the

* source code.

*/
#include <stdio.h> /* for printf () =*/

#include <stdlib.h>
#include <comedilib.h>
#include <ctype.h>
#include <math.h>

int subdev = 0; /+ change this to your input subdevice =/
int chan = 0; /+ change this to your channel =/

int range = 0; /* more on this later =/

int aref = AREF_GROUND; /+ more on this later =/

const char filename[] = "/dev/comediO";

int main(int argc, char xargv[])
{

comedi_t =*device;

lsampl_t data;

double physical_value;

int retval;

comedi_range % range_info;

lsampl_t maxdata;

device = comedi_open (filename) ;
if (device == NULL)
{
comedi_perror (filename) ;
return -1;

retval = comedi_data_read(device, subdev, chan, range, aref, &data);
if (retval < 0)
{

comedi_perror (filename) ;

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
11/148

return -1;

comedi_set_global_ oor_behavior (COMEDI_OOR_NAN) ;
range_info = comedi_get_range (device, subdev, chan, range);
maxdata = comedi_get_maxdata (device, subdev, chan);
printf (" [0, %d] -> [%g,%g]\n", maxdata,
range_info->min, range_info->max);
physical_value = comedi_to_phys(data, range_info, maxdata);
if (isnan (physical_value)) {
printf ("Out of range [%g,%g9]",
range_info->min, range_info->max);
} else {
printf ("%g", physical_value);
switch (range_info->unit) {
case UNIT_volt: printf (" V"); break;
case UNIT_mA: printf (" mA"); break;
case UNIT_none: break;
default: printf (" (unknown unit %d)",
range_info->unit) ;
}
printf (" (%$lu in raw units)\n", (unsigned long)data);

}

return 0;

The source code file for the above program can be found in the Comedilib source at demo/tut2 . c and if installed as a package
usually at /usr/share/doc/libcomedi-dev/demo/ with all the other tutorial/demo files.

3.4 Asynchronous acquisition

Of special importance is the so called "asynchronous data acquisition" where Comedi is sampling in the background at a given
sample rate. The user can retrieve the data whenever it is convenient. Comedi stores the data in a ring-buffer so that programs can
perform other tasks in the foreground, for example plotting data or interacting with the user. This technique is used in programs
such as ktimetrace or comedirecord.

There are two different ways how a sequence of channels is measured during asynchronous acquisition (see also the Figure in
the introduction):

* The channels are measured with the help of a multiplexer which switches to the next channel after each measurement. This
means that the sampling rate is divided by the number of channels.

e The channels are all measured at the same time, for example when every channel has its own converter. In this case the
sampling rate need not to be divided by the number of channels.

How your Comedi device handles the asynchronous acquisition can be found out with the command comedi_board_info -v.

The program demo/tut 3. c demonstrates the asynchronous acquisition. The general strategy is always the same: first, we tell
Comedi all sampling parameters such as the sampling rate, the number of channels and anything it needs to know so that it can
run independently in the background. Then Comedi checks our request and it might modify it. For example we might want to
have a sampling rate of 16kHz but we only get 1kHz. Finally we can start the asynchronous acquisition. Once it has been started
we need to check periodically if data is available and request it from Comedi so that its internal buffer won’t overrun.

In summary the asynchonous acquisition is performed in the following way:

* Create a command structure of type comedi_cmd

 Call the function comedi_get_cmd_generic_timed() to fill the command structure with your comedi device, subdevice,
sampling rate and number of channels.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
12/148

* Create a channel-list and store it in the command structure. This tells comedi which channels should be sampled in the
background.

e Call comedi_command_test() with your command structure. Comedi might modify your requested sampling rate and
channels.

e Call comedi_command_test() again which now should return zero for success.

e Call comedi_command() to start the asynchronous acquisition. From now on the kernel ringbuffer will be filled at the
specified sampling rate.

* Call periodically the standard function read() and receive the data. The result should always be non zero as long as the
acquisition is running.

» Convert the received data either into Isampl_t or sampl_t depending on the subdevice flag SDF_LSAMPL.

* Poll for data with read() as long as it returns a positive result or until the program terminates.

The program below is a stripped down version of the program cmd. c in the demo directory. To compile it run:

gcc tut3.c -lcomedi -1m -o tut3

It requests data from two channels at a sampling rate of 1kHz and a total of 10000 samples. which are then printed to stdout. You
can pipe the data into a file and plot it with gnuplot. As mentioned above, central in this program is the loop using the standard
C read() command which receives the buffer contents. Below is an extract from tut 3. ¢ showing the relevant commands:

/* open the device */
dev = comedi_open (options.filename);
if (!dev) {
comedi_perror (options.filename) ;
exit (1) ;

// Print numbers for clipped inputs
comedi_set_global_oor_behavior (COMEDI_OOR_NUMBER) ;

/* Set up channel list x/
for(i = 0; i < options.n_chan; i++) {
chanlist[i] = CR_PACK (options.channel + i,
options.range,
options.aref);
range_info[i] = comedi_get_range (dev,
options.subdevice,
options.channel, options.range);
maxdata[i] = comedi_get_maxdata (dev,
options.subdevice,
options.channel) ;

/* prepare_cmd_lib () uses a Comedilib routine to find a
* good command for the device. prepare_cmd() explicitly
* creates a command, which may not work for your device. =/
prepare_cmd_1lib (dev,
options.subdevice,
options.n_scan,
options.n_chan,
le9 / options.freq, cmd);

/* comedi_command_test () tests a command to see if the
* trigger sources and arguments are valid for the subdevice.
x* If a trigger source is invalid, it will be logically ANDed
* with valid values (trigger sources are actually bitmasks),

Comedi

13/148

which may or may not result in a valid trigger source.
If an argument is invalid, it will be adjusted to the
nearest valid value. In this way, for many commands, you
can test it multiple times until it passes. Typically,
if you can’t get a valid command in two tests, the original
command wasn’t specified very well. x/
ret = comedi_command_test (dev, cmd);
if (ret < 0){

comedi_perror ("comedi_command_test");

exit (1);
}
ret = comedi_command_test (dev, cmd);
if (ret < 0){

comedi_perror ("comedi_command_test");

exit (1);
}
fprintf (stderr, "second test returned %d (%s)\n", ret,

cmdtest_messages|[ret]);

if (ret!=0) {
fprintf (stderr, "Error preparing command\n");
exit (1) ;

LR T R

/* start the command x/

ret = comedi_command (dev, cmd);

if (ret < 0){
comedi_perror ("comedi_command") ;
exit (1);

}

subdev_flags = comedi_get_subdevice_flags (dev, options.subdevice) ;

while (1) {
ret = read(comedi_fileno (dev),buf,BUFSZ);
if(ret < 0){
/* some error occurred x/
perror ("read");
break;
lelse if (ret == 0) {
/+ reached stop condition x/
break;
lelse{
static int col = 0;
int bytes_per_sample;
total += ret;

if (options.verbose) fprintf (stderr, "read %d %d\n", ret, total);

if (subdev_flags & SDF_LSAMPL)

bytes_per_sample = sizeof (lsampl_t);
else
bytes_per_sample = sizeof (sampl_t);
for(i = 0; i < ret / bytes_per_sample; i++) {
if (subdev_flags & SDF_LSAMPL) {
raw = ((lsampl_t =*)buf) [i];
} else {
raw = ((sampl_t x)buf) [i];

}
print_datum(raw, col);
col++;
if (col == options.n_chan) {
printf ("\n");
col=0;

Comedi
14 /148

/%
* This prepares a command in a pretty generic way. We ask the
* library to create a stock command that supports periodic
* sampling of data, then modify the parts we want. x/
int prepare_cmd_lib (comedi_t =xdev, int subdevice, int n_scan, int n_chan,
unsigned scan_period_nanosec, comedi_cmd *cmd)

int ret;
memset (cmd, 0, sizeof (*xcmd)) ;

/* This comedilib function will get us a generic timed

* command for a particular board. If it returns -1,

* that’s bad. */
ret = comedi_get_cmd_generic_timed(dev, subdevice, cmd, n_chan, scan_period_nanosec);
1f (ret<0) {

printf ("comedi_get_cmd_generic_timed failed\n");

return ret;

/* Modify parts of the command */

cmd->chanlist = chanlist;
cmd->chanlist_len = n_chan;
if (cmd->stop_src == TRIG_COUNT) cmd->stop_arg = n_scan;

return 0;

For advanced programmers the function comedi_get_buffer_contents()is useful to check if there is actually data in the
ringbuffer so that a call of read() can be avoided for example when the data readout is called by a timer call-back function.

3.5 Further examples

See the demo subdirectory of Comedilib for more example programs. The directory contains a README file with descriptions
of the various demo programs.

4 Acquisition and configuration functions

This Section gives an overview of all Comedi functions with which application programmers can implement their data acquisi-
tion. (With ‘acquisition” we mean all possible kinds of interfacing with the cards: input, output, configuration, streaming, etc.)
Section 5 explains the function calls in full detail.

4.1 Functions for single acquisition

The simplest form of using Comedi is to get one single sample to or from an interface card. This sections explains how to do
such simple digital and analog acquisitions.

4.1.1 Single digital acquisition

Many boards supported by Comedi have digital input and output channels; i.e., channels that can only produce a 0 or a 1. Some
boards allow the direction (input or output) of each channel to be specified independently in software.

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
15/148

Comedi groups digital channels into a subdevice, which is a group of digital channels that have the same characteristics. For
example, digital output lines will be grouped into a digital output subdevice, bidirectional digital lines will be grouped into a
digital I/O subdevice. Thus, there can be multiple digital subdevices on a particular board.

Individual bits on a digital I/O device can be read and written using the functions comedi_dio_read() and comedi_dio-
_write():

int comedi_dio_read(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int *bit);
int comedi_dio_write(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int bit);

The device parameter is a pointer to a successfully opened Comedi device. The subdevice and channel parameters are
positive integers that indicate which subdevice and channel is used in the acquisition. The integer bit contains the value of the
acquired bit.

The direction of bidirectional lines can be configured using the function comedi_dio_config():
int comedi_dio_config(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int dir);

The parameter dir should be either COMEDI_INPUT or COMEDI_OUTPUT. Many digital I/O subdevices group channels into
blocks for configuring direction. Changing one channel in a block changes the entire block.

Multiple channels can be read and written simultaneously using the function comedi_dio_bitfield2():

int comedi_dio_bitfield2(comedi_t *device, unsigned int subdevice, unsigned int write_mask, unsigned int *bits, unsigned int
base_channel);

Each channel from base_channel to base_channel + 31 is assigned to a bit in the write mask and bits bitfield with bit
0 assigned to channel base_channel, bit 1 assigned to channel base_channel + 1, etc. If a bit in write_mask is set, the
corresponding bit in +bits will be written to the digital output line corresponding to the channel given by base_channel plus
the bit number. Each digital line is then read and placed into *bits. The value of bits in «bits corresponding to digital output
lines is undefined and device-specific. Channel base_channel + 0 is the least significant bit in the bitfield. No more than 32
channels at once can be accessed using this method. Warning! Older versions of Comedi may ignore base_channel and treat
it as 0 unless the subdevice has more than 32 channels.

The digital acquisition functions seem to be very simple, but, behind the implementation screens of the Comedi kernel module,
they are executed as special cases of the general instruction command.

4.1.2 Single analog acquisition

Analog Comedi channels can produce data values that are samples from continuous analog signals. These samples are integers
with a significant content in the range of, typically, 8, 10, 12, or 16 bits.

Single samples can be read from an analog channel using the function comedi_data_read():

int comedi_data_read(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
Isampl_t *data);

This reads one such data value from a Comedi channel, and puts it in the user-specified data buffer.

The range parameter is the zero-based index of one of the gain ranges supported by the channel. This is a number from 0 to N-1
where N is the number of ranges supported by the channel. Use the function comedi_get_n_ranges() to get the number of
ranges supported by the channel, the function comedi_find_range() to search for a suitable range, or the function comed-
i_get_range() to get the details of a supported range.

The aref parameter specifies an analog reference to use: AREF_GROUND, AREF_COMMON, AREF_DIFF, or AREF_OTHER.
Use the function comedi_get_subdevice_flags() to see which analog references are supported by the subdevice.

In the opposite direction, single samples can be written to an analog output channel using the function comedi_data_writ-

e():

int comedi_data_write(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
Isampl_t data);

Raw data values read or written by the above functions are unsigned integers less than, or equal to, the maximum sample value
of the channel, which can be determined using the function comedi_get_maxdata():

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
16/148

Isampl_t comedi_get_maxdata(comedi_t *device, unsigned int subdevice, unsigned int channel);

Conversion between raw data values and uncalibrated physical units can be performed by the functions comedi_to_phys()
and comedi_from_phys():

double comedi_to_phys(lsampl_t data, comedi_range *range, Isampl_t maxdata);
Isampl_t comedi_from_phys(double data, comedi_range *range, Isampl_t maxdata);

There are some data structures in these commands that are not fully self-explanatory:

e comedi_t: this data structure contains all information that a user program has to know about an open Comedi device. The
programmer doesn’t have to fill in this data structure manually: it gets filled in by opening the device.

 Isampl_t: this ‘data structure’ represents one single sample. On most architectures, it’s nothing more than a 32 bits value.
Internally, Comedi does some conversion from raw sample data to ‘correct’ integers. This is called ‘data munging’.

* comedi_range: this holds the minimum and maximum physical values for a gain range supported by a channel of a subdevice,
and specifies the units. This can be used in combination with the channel’s ‘maxdata’ value to convert between unsigned
integer sample values (of type Isampl_t or sampl_t) and physical units in a nominal (uncalibrated) way using the comedi_t -
o_phys() and comedi_ from_phys() functions. Use the comedi_get_maxdata() function to get the ‘maxdata’ value
for the channel.

Most functions specify the range to be used for a channel by a zero-based index into the list of ranges supported by the
channel. Depending on the device and subdevice, different channels on the subdevice may or may not share the same list of
ranges, that is, ranges may or may not be channel-specific. (The SDF_RANGETYPE subdevice flag indicates whether ranges
are channel-specific.)

Each single acquisition by, for example, comedi_data_read() requires quite some overhead, because all the arguments of
the function call are checked. If multiple acquisitions must be done on the same channel, this overhead can be avoided by using
a function that can read more than one sample, comedi_data_read_n():

int comedi_data_read_n(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
Isampl_t *data, unsigned int n);

The number of samples, n, is limited by the Comedi implementation (to a maximum of 100 samples), because the call is blocking.

The start of the a single data acquisition can also be delayed by a specified number of nano-seconds using the function comed-
i_data_read_delayed():

int comedi_data_read_delayed(comedi_t *device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned
int aref, Isampl_t *data, unsigned int nano_sec);

All these read and write acquisition functions are implemented on top of the generic instruction command.

4.2 Instructions for multiple acquisitions

The instruction is one of the most generic, overloaden and flexible functions in the Comedi APL. It is used to execute a multiple
of identical acquisitions on the same channel, but also to perform a configuration of a channel. An instruction list is a list
of instructions, possibly on different channels. Both instructions and instructions lists are executed synchronously, i.e., while
blocking the calling process. This is one of the limitations of instructions; the other one is that they cannot code an acquisition
involving timers or external events. These limits are eliminated by the command acquisition primitive.

4.2.1 The instruction data structure

All the information needed to execute an instruction is stored in the comedi_insn data structure:

typedef struct comedi_insn_struct {

unsigned int insn; // integer encoding the type of acquisition
// (or configuration)
unsigned int n; // number of elements in data array

lsampl_t =xdata; // pointer to data buffer

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
17 /148

unsigned int subdev; // subdevice
unsigned int chanspec; // encoded channel specification
unsigned int unused[3];

} comedi_insn;

Because of the large flexibility of the instruction function, many types of instruction do not need to fill in all fields, or attach
different meanings to the same field. But the current implementation of Comedi requires the data field to be at least one byte
long.

The insn member of the instruction data structure determines the type of acquisition executed in the corresponding instruction:

e INSN_READ: the instruction executes a read on an analog channel.

e INSN_WRITE: the instruction executes a write on an analog channel.

e INSN_BITS: indicates that the instruction must read or write values on multiple digital I/O channels.
e INSN_GTOD: the instruction performs a ‘Get Time Of Day’ acquisition.

e INSN_WATIT: the instruction blocks for a specified number of nanoseconds.

4.2.2 Instruction execution

Once an instruction data structure has been filled in, the corresponding instruction is executed with the function comedi_do-
_insn():

int comedi_do_insn(comedi_t *device, comedi_insn *instruction);

Many Comedi instructions are shortcuts that relieve the programmer from explicitly filling in the data structure and calling the
comedi_do_insn() function.

A list of instructions can be executed in one function call using the function comedi_do_insnlist():
int comedi_do_insnlist(comedi_t *device, comedi_insnlist *list);

The parameter 1ist is a pointer to a comedi_insnlist data structure holding a pointer to an array of comedi_insn and the number
of instructions in the list:

typedef struct comedi_insnlist_struct {
unsigned int n_insns;
comedi_insn xinsns;

} comedi_insnlist;

The number of instructions in the list is limited in the implementation, because instructions are executed synchronously, i.e., the
call blocks until the whole instruction (list) has finished.

4.3 Instructions for configuration

Section 4.2 explains how instructions are used to do acquisition on channels. This section explains how they are used to configure
a subdevice. There are various sorts of configurations, and the specific information for each different configuration possibility is
to be specified via the data buffer of the instruction data structure. (So, the pointer to a Isampl_t is misused as a pointer to an
array with board-specific information.)

Using INSN_CONFIG as the insn member in an instruction data structure indicates that the instruction will not perform ac-
quisition on a channel, but will configure that channel. The chanspec member in the comedi_insn data structure, contains the
channel to be configured. The zeroth element of the data array is always an id that specifies what type of configuration instruction
is being performed. The meaning of rest of the elements in the data array depend on the configuration instruction id. Some of the
possible ids are summarised in the table below, along with the meanings of the data array elements for each type of configuration
instruction.

http://www.comedi.org
http://www.comedi.org

Comedi

18/148

data[0]

Description

n (num-
ber of
ele-
ments
in data
array)

Meanings of data[1], ...,
data[n-1]

INSN_CONFIG_DIO_INPUT

Configure a DIO line as input. It is
easier to use
comedi_dio_config() than to
use this configuration instruction
directly.

n/a

INSN_CONFIG_DIO_OUTPUT

Configure a DIO line as output. It
is easier to use
comedi_dio_config() than to
use this configuration instruction
directly.

n/a

INSN_CONFIG_ALT_SOURCE

Select an alternate input source.
This instruction is used by
calibration programs to configure
analog input channels which can
be redirected to read internal
calibration references. You need
to set the CR_ALT_SOURCE flag
in the chanspec when reading to
actually read from the configured
alternate input source. If you are
using comedi_data_read(),
then the channel parameter can be
bitwise or’d with the
CR_ALT_SOURCE flag.

data[1]: alternate input source.

INSN_CONFIG_BLOCK_SIZE

Specify block size for
asynchonous command data.
When performing streaming input,
many boards accumulate samples
in internal fifos and transfer them
to the host computer in chunks.
Some drivers let you suggest a
size in bytes for how big a the
chunks should be. This lets you
tune how often the host computer
is interrupted with a new chunk of
data.

data[1]: The desired block size in
bytes. The actual configured block
size is writen back to data[1] after
the instruction completes. This
instruction acts purely as a query
if the block size is set to zero.

INSN_CONFIG_DIO_QUERY

Queries the configuration of a
DIO line to see if it is an input or
output. It is probably easier to use
the comedilib function
comedi_dio_get_config()
than to use this instruction
directly.

data[1]: The instruction sets this
element to either
COMEDI_INPUT or
COMEDI_OUTPUT.

See the comedilib demo program demo/choose_clock. c for an example of using a configuration instruction.

4.4 Instruction for internal triggering

This special instruction has INSN_INTTRIG as the insn member in its instruction data structure. Its execution causes an
internal triggering event. This event can, for example, cause the device driver to start a conversion, or to stop an ongoing

Comedi
19/148

acquisition. The exact meaning of the triggering depends on the card and its particular driver.

The data[0] element of the INSN_INTTRIG instruction is reserved for future use, and should be set to 0.

4.5 Commands for streaming acquisition

The most powerful Comedi acquisition primitive is the command. 1t’s powerful because, with one single command, the program-
mer launches:

* apossibly infinite sequence of acquisitions,

* accompanied with various callback functionalities (DMA, interrupts, driver-specific callback functions),
* for any number of channels,

 with an arbitrary order of channels in each scan (possibly even with repeated channels per scan),

* and with various scan triggering sources, external (i.e., hardware pulses) as well as internal (i.e., pulses generated on the DAQ
card itself, or generated by a software trigger instruction).

This command functionality exists in the Comedi API, because various data acquisition devices have the capability to perform
this kind of complex acquisition, driven by either on-board or off-board timers and triggers.

A command specifies a particular data acquisition sequence, which consists of a number of scans, and each scan is comprised of
a number of conversions, which usually corresponds to a single A/D or D/A conversion. So, for example, a scan could consist
of sampling channels 1, 2 and 3 of a particular device, and this scan should be repeated 1000 times, at intervals of 1 millisecond
apart.

The command function is complementary to the configuration instruction function: each channel in the command’s chanlist
should first be configured by an appropriate instruction.

4.5.1 Executing a command

A command is executed by the function comedi_ command():
int comedi_command(comedi_t *device, comedi_cmd *command);

The following sections explain the meaning of the comedi_cmd data structure. Filling in this structure can be quite complicated,
and requires good knowledge about the exact functionalities of the DAQ card. So, before launching a command, the application
programmer is adviced to check whether this complex command data structure can be successfully parsed. So, the typical
sequence for executing a command is to first send the command through comedi_command_test() once or twice. The test
will check that the command is valid for the particular device, and often makes some adjustments to the command arguments,
which can then be read back by the user to see the actual values used.

A Comedi program can find out on-line what the command capabilities of a specific device are, by means of the comedi_ge—
t_cmd_src_mask() function.

4.5.2 The command data structure

The command executes according to the information about the requested acquisition, which is stored in the comedi_cmd data
structure:

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct {
unsigned int subdev; // which subdevice to sample
unsigned int flags; // encode some configuration possibilities
// of the command execution; e.g.,
// whether a callback routine is to be
// called at the end of the command

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
20/148

unsigned int start_src; // event to make the acquisition start
unsigned int start_arg; // parameters that influence this start

unsigned int scan_begin_src; // event to make a particular scan start
unsigned int scan_begin_arg; // parameters that influence this start®

unsigned int convert_src; // event to make a particular conversion start
unsigned int convert_arg; // parameters that influence this start
unsigned int scan_end_src; // event to make a particular scan terminate
unsigned int scan_end_arg; // parameters that influence this termination
unsigned int stop_src; // what make the acquisition terminate
unsigned int stop_arg; // parameters that influence this termination
unsigned int xchanlist; // pointer to list of channels to be sampled
unsigned int chanlist_len; // number of channels to be sampled

sampl_t =*data; // address of buffer

unsigned int data_len; // number of samples to acquire

bi

The start and end of the whole command acquisition sequence, and the start and end of each scan and of each conversion, is
triggered by a so-called event. More on these in Section 4.5.3.

The subdev member of the comedi_cmd structure is the index of the subdevice the command is intended for. The comedi_ f—
ind_subdevice_by_type() function can be useful in discovering the index of your desired subdevice.

The chanlist member of the comedi_cmd data structure should point to an array whose number of elements is specified by
chanlist_len (this will generally be the same as the scan_end_arg). The chanlist specifies the sequence of channels and
gains (and analog references) that should be stepped through for each scan. The elements of the chaniist array should be
initialized by ‘packing’ the channel, range and reference information together with the CR_PACK() macro.

The data and data_len members can be safely ignored when issueing commands from a user-space program. They only have
meaning when a command is sent from a kernel module using the kcomedi 11ib interface, in which case they specify the buffer
where the driver should write/read its data to/from.

The final member of the comedi_cmd structure is the flags field, i.e., bits in a word that can be bitwise-or’d together. The
meaning of these bits are explained in Section 4.5.4.

4.5.3 The command trigger events

A command is a very versatile acquisition instruction, in the sense that it offers lots of possibilities to let different hardware
and software sources determine when acquisitions are started, performed, and stopped. More specifically, the command data
structure has five types of events: start the acquisition, start a scan, start a conversion, stop a scan, and stop the acquisition. Each
event can be given its own source (the . .._src members in the comedi_cmd data structure). And each event source can have
a corresponding argument (the . .._arg members of the comedi_cmd data structure) whose meaning depends on the type of
source trigger. For example, to specify an external digital line ‘3’ as a source (in general, any of the five event sources), you
would use srce=TRIG_EXT and arg=3.

The following paragraphs discuss in somewhat more detail the trigger event sources(. . ._src), and the corresponding arguments
(..._arg).

The start of an acquisition is controlled by the start_src events. The available options are:

e TRIG_NOW: the ‘start’ event occurs start_arg nanoseconds after the command is set up. Currently, only start_arg=0 is
supported.

e TRIG_FOLLOW: (For an output device.) The ‘start’ event occurs when data is written to the buffer.

Comedi
21/148

e TRIG_EXT: the ‘start’ event occurs when an external trigger signal occurs; e.g., a rising edge of a digital line. start_arg
chooses the particular digital line.

e TRIG_INT: the ‘start’ event occurs on a Comedi internal signal, which is typically caused by an INSN__INTTRIG instruction.
The start of the beginning of each scan is controlled by the scan_begin_src events. The available options are:

e TRIG_TIMER: ‘scan begin’ events occur periodically. The time between ‘scan begin’ events is scan_begin_arg nanosec-
onds.

* TRIG_FOLLOW: The ‘scan begin’ event occurs immediately after a ‘scan end’ event occurs.

* TRIG_EXT: the ‘scan begin’ event occurs when an external trigger signal occurs; e.g., a rising edge of a digital line. scan_-
begin_arg chooses the particular digital line.

The scan_begin_arg used here may not be supported exactly by the device, but it will be adjusted to the nearest supported
value by comedi_command_test().

The timing between each sample in a scan is controlled by the convert_src events. The available options are:

e TRIG_TIMER: the conversion events occur periodically. The time between ‘convert’ events is convert_arg nanoseconds.

e TRIG_EXT: the conversion events occur when an external trigger signal occurs, e.g., a rising edge of a digital line. conver-
t_arg chooses the particular digital line.

e TRIG_NOW: All conversion events in a scan occur simultaneously.

The end of each scan is almost always specified by setting the scan_end_src eventto TRIG_COUNT, with the argument being
the same as the number of channels in the chanlist. You could probably find a device that allows something else, but it would
be strange.

The end of an acquisition is controlled by stop_src event. The available options are:

e TRIG_COUNT: stop the acquisition after stop_arg scans.

* TRIG_NONE: perform continuous acquisition, until stopped using comedi_cancel().

Its stop_arg argument is reserved and should be set to 0. (‘Reserved’ means that unspecified things could happen if it is set
to something else but 0.)

There are a couple of less usual or not yet implemented events:

e TRIG_TIME: cause an event to occur at a particular time.

(This event source is reserved for future use.)

* TRIG_OTHER: driver specific event trigger.

This event can be useful as any of the trigger sources. Its exact meaning is driver specific, because it implements a feature
that otherwise does not fit into the generic Comedi command interface. Configuration of TRIG_OTHER features are done by
INSN_CONF IG instructions.

The argument is reserved and should be set to 0.

Not all event sources are applicable to all events. Supported trigger sources for specific events depend significantly on your
particular device, and even more on the current state of its device driver. The comedi_get_cmd_src_mask() function is
useful for determining what trigger sources a subdevice supports.

http://www.comedi.org
http://www.comedi.org

Comedi
22/148

454 The command flags

The rlags field in the command data structure is used to specify some ‘behaviour’ of the acquisitions in a command. The
meaning of the field is as follows:

* TRIG_RT: ask the driver to use a hard real-time interrupt handler. This will reduce latency in handling interrupts from your
data aquisition hardware. It can be useful if you are sampling at high frequency, or if your hardware has a small onboard data
buffer. You must have a real-time kernel (RTAI or RTLinux/GPL) and must compile Comedi with real-time support, or this
flag will do nothing.

e TRIG_WAKE_EOS: where ‘EOS’ stands for ‘End of Scan’. Some drivers will change their behaviour when this flag is set,
trying to transfer data at the end of every scan (instead of, for example, passing data in chunks whenever the board’s hardware
data buffer is half full). This flag may degrade a driver’s performance at high frequencies, because the end of a scan is, in
general, a much more frequent event than the filling up of the data buffer.

e TRIG_ROUND_NEAREST: round to nearest supported timing period, the default. This flag (as well as the following three),
indicates how timing arguments should be rounded if the hardware cannot achieve the exact timing requested.

e TRIG_ROUND_DOWN: round period down.

e TRIG_ROUND_UP: round period up.

e TRIG_ROUND_UP_NEXT: this one doesn’t do anything, and I don’t know what it was intended to do...?

e TRIG_DITHER: enable dithering? Dithering is a software technique to smooth the influence of discretization ‘noise’.
* TRIG_DEGLITCH: enable deglitching? Another ‘noise’ smoothing technique.

e TRIG_WRITE: write to bidirectional devices. Could be useful, in principle, if someone wrote a driver that supported com-
mands for a digital I/O device that could do either input or output.

e TRIG_BOGUS: do the motions?

e TRIG_CONFIG: perform configuration, not triggering. This is a legacy of the deprecated comedi_trig_struct data structure,
and has no function at present.

4.5.5 Anti-aliasing

If you wish to aquire accurate waveforms, it is vital that you use an anti-alias filter. An anti-alias filter is a low-pass filter used
to remove all frequencies higher than the Nyquist frequency (half your sampling rate) from your analog input signal before you
convert it to digital. If you fail to filter your input signal, any high frequency components in the original analog signal will create
artifacts in your recorded digital waveform that cannot be corrected.

For example, suppose you are sampling an analog input channel at a rate of 1000 Hz. If you were to apply a 900 Hz sine wave to
the input, you would find that your sampling rate is not high enough to faithfully record the 900 Hz input, since it is above your
Nyquist frequency of 500 Hz. Instead, what you will see in your recorded digital waveform is a 100 Hz sine wave! If you don’t
use an anti-alias filter, it is impossible to tell whether the 100 Hz sine wave you see in your digital signal was really produced by
a 100 Hz input signal, or a 900 Hz signal aliased to 100 Hz, or a 1100 Hz signal, etc.

In practice, the cutoff frequency for the anti-alias filter is usually set 10% to 20% below the Nyquist frequency due to fact that
real filters do not have infinitely sharp cutoffs.

4.6 Slowly-varying inputs

Note: The functions described here use an old feature that is no longer implemented by the Comedi kernel layer. THEY
WILL NOT WORK!

Sometimes, your input channels change slowly enough that you are able to average many successive input values to get a more
accurate measurement of the actual value. In general, the more samples you average, the better your estimate gets, roughly by a
factor of sqrt(number_of_samples). Obviously, there are limitations to this:

http://www.rtai.org
http://www.rtlinux-gpl.org/
http://www.comedi.org
http://www.comedi.org

Comedi
23/148

* you are ultimately limited by ‘Spurious Free Dynamic Range’. This SFDR is one of the popular measures to quantify how
much noise a signal carries. If you take a Fourier transform of your signal, you will see several ‘peaks’ in the transform: one
or more of the fundamental harmonics of the measured signal, and lots of little ‘peaks’ (called ‘spurs’) caused by noise. The
SFDR is then the difference between the amplitude of the fundamental harmonic and of the largest spur (at frequencies below
half of the Nyquist frequency of the DAQ sampler!).

* you need to have some noise on the input channel, otherwise you will be averaging the same number N times. (Of course, this
only holds if the noise is large enough to cause at least a one-bit discretization.)

* the more noise you have, the greater your SFDR, but it takes many more samples to compensate for the increased noise.

« if you feel the need to average samples for, for example, two seconds, your signal will need to be very slowly-varying, i.e., not
varying more than your target uncertainty for the entire two seconds.

As you might have guessed, the Comedi library has functions to help you in your quest to accurately measure slowly varying
inputs:

int comedi_sv_init(comedi_sv_t *sv, comedi_t *device, unsigned int subdevice, unsigned int channel);
The above function comedi_sv_init() initializes the comedi_sv_t data structure, used to do the averaging acquisition:

typedef struct comedi_sv_struct {
comedi_t =*dev;
unsigned int subdevice;
unsigned int chan;

/+ range policy x/
int range;
int aref;

/+ number of measurements to average (for analog inputs) */
int n;

lsampl_t maxdata;
} comedi_sv_t;

The actual acquisition is done with the function comedi_sv_measure():
int comedi_sv_measure(comedi_sv_t *sv, double *data);

The number of samples over which the function comedi_sv_measure() averages is limited by the implementation (currently
the limit is 100 samples).

One typical use for this function is the measurement of thermocouple voltages. And the Comedi self-calibration utility also uses
these functions. On some hardware, it is possible to tell it to measure an internal stable voltage reference, which is typically going
to be very slowly varying; on the kilosecond time scale or more. So, it is reasonable to measure millions of samples, to get a very
accurate measurement of the A/D converter output value that corresponds to the voltage reference. Sometimes, however, this is
overkill, since there is no need to perform a part-per-million calibration to a standard that is only accurate to a part-per-thousand.

4.7 Experimental functionality

The following subsections document functionality that has not yet matured. Most of this functionality has even not been imple-
mented yet in any single device driver. This information is included here, in order to stimulate discussion about their API, and to
encourage pioneering implementations.

4.7.1 Digital input combining machines

(Status: experimental (i.e., no driver implements this yet))

When one or several digital inputs are used to modify an output value, either an accumulator or a single digital line or bit,
a bitfield structure is typically used in the Comedi interface. The digital inputs have two properties, ‘sensitive’ inputs and

http://www.comedi.org
http://www.comedi.org
http://www.comedi.org

Comedi
24 /148

‘modifier’ inputs. Edge transitions on sensitive inputs cause changes in the output signal, whereas modifier inputs change the
effect of edge transitions on sensitive inputs. Note that inputs can be both modifier inputs and sensitive inputs.

For simplification purposes, it is assumed that multiple digital inputs do not change simultaneously.

The combined state of the modifier inputs determine a modifier state. For each combination of modifier state and sensitive input,
there is a set of bits that determine the effect on the output value due to positive or negative transitions of the sensitive input. For
each transition direction, there are two bits defined as follows:

00 transition is ignored.
01 accumulator is incremented, or output is set.
10 accumulator is decremented, or output is cleared.

11 reserved.

For example, a simple digital follower is specified by the bit pattern 01 10, because it sets the output on positive transitions of the
input, and clears the output on negative transitions. A digital inverter is similarily 10 01. These systems have only one sensitive
input.

As another example, a simple up counter, which increments on positive transitions of one input, is specified by 01 00. This
system has only one sensitive input.

When multiple digital inputs are used, the inputs are divided into two types, inputs which cause changes in the accumulator, and
those that only modify the meaning of transitions on other inputs. Modifier inputs do not require bitfields, but there needs to be a
bitfield of length 4*(2"(N-1)) for each edge sensitive input, where N is the total number of inputs. Since N is usually 2 or 3, with
only one edge sensitive input, the scaling issues are not significant.

4.7.2 Analog filtering configuration

(Status: design (i.e., no driver implements this yet).)
The insn field of the instruction data structure has not been assigned yet.
The chanspec field of the instruction data structure is ignored.

Some devices have the capability to add white noise (dithering) to analog input measurement. This additional noise can then be
averaged out, to get a more accurate measurement of the input signal. It should not be assumed that channels can be separately
configured. A simple design can use 1 bit to turn this feature on/off.

Some devices have the capability of changing the glitch characteristics of analog output subsytems. The default (off) case should
be where the average settling time is lowest. A simple design can use 1 bit to turn this feature on/off.

Some devices have a configurable analog filters as part of the analog input stage. A simple design can use 1 bit to enable/disable
the filter. Default is disabled, i.e., the filter being bypassed, or if the choice is between two filters, the filter with the largest
bandwidth.

4.7.3 Analog Output Waveform Generation

(Status: design (i.e., no driver implements this yet).)
The insn field of the instruction data structure has not been assigned yet.
The chanspec field of the instruction data structure is ignored.

Some devices have the ability to cyclicly loop through samples kept in an on-board analog output FIFO. This config should allow
the user to enable/disable this mode.

This config should allow the user to configure the number of samples to loop through. It may be necessary to configure the
channels used.

Comedi
25/148

4.7.4 Extended Triggering

(Status: alpha.)
The insn field of the instruction data structure has not been assigned yet.
The chanspec field of the instruction data structure is ignored.

This section covers common information for all extended triggering configuration, and doesn’t describe a particular type of
extended trigger.

Extended triggering is used to configure triggering engines that do not fit into commands. In a typical programming sequence,
the application will use configuration instructions to configure an extended trigger, and a command, specifying TRIG_OTHER
as one of the trigger sources.

Extended trigger configuration should be designed in such a way that the user can probe for valid parameters, similar to how
command testing works. An extended trigger configuration instruction should not configure the hardware directly, rather, the
configuration should be saved until the subsequent command is issued. This allows more flexibility for future interface changes.

It has not been decided whether the configuration stage should return a token that is then used as the trigger argument in the
command. Using tokens is one method to satisfy the problem that extended trigger configurations may have subtle compatiblity
issues with other trigger sources/arguments that can only be determined at command test time. Passing all stages of a command
test should only be allowed with a properly configured extended trigger.

Extended triggers must use data[l] as flags. The upper 16 bits are reserved and used only for flags that are common to all
extended triggers. The lower 16 bits may be defined by the particular type of extended trigger.

Various types of extended triggers must use data[1] to know which event the extended trigger will be assigned to in the command
structure. The possible values are an OR’d mask of the following:

e COMEDI_EV_START

e COMEDI_EV_SCAN_BEGIN

e COMEDI_EV_CONVERT

e COMEDI_EV_SCAN_END

¢ COMEDI_EV_STOP

4.7.5 Analog Triggering

(Status: alpha. The ni_mio_common. c driver implements this feature.)
The insn field of the instruction data structure has not been assigned yet.
The chanspec field of the instruction data structure is ignored.

The data field of the instruction data structure is used as follows:

data[1] trigger and combining machine configuration.

data[2] analog triggering signal chanspec.

data[3] primary analog level.

data[4] secondary analog level.

Analog triggering is described by a digital combining machine that has two sensitive digital inputs. The sensitive digital inputs
are generated by configurable analog comparators. The analog comparators generate a digital 1 when the analog triggering signal

is greater than the comparator level. The digital inputs are not modifier inputs. Note, however, there is an effective modifier due
to the restriction that the primary analog comparator level must be less than the secondary analog comparator level.

If only one analog comparator signal is used, the combining machine for the secondary input should be set to ignored, and the
secondary analog level should be set to 0.

Comedi
26/148

The interpretation of the chanspec and voltage levels is device dependent, but should correspond to similar values of the analog
input subdevice, if possible.

Notes: Reading range information is not addressed. This makes it difficult to convert comparator voltages to data values.

Possible extensions: A parameter that specifies the necessary time that the set condition has to be true before the trigger is
generated. A parameter that specifies the necessary time that the reset condition has to be true before the state machine is reset.

4.7.6 Bitfield Pattern Matching Extended Trigger

(Status: design. No driver implements this feature yet.)
The insn field of the instruction data structure has not been assigned yet.
The chanspec field of the instruction data structure is ignored.

The data field of the instruction data structure is used as follows:

data[1] trigger flags.
data[2] mask.

data[3] pattern.

The pattern matching trigger issues a trigger when all of a specifed set of input lines match a specified pattern. If the device
allows, the input lines should correspond to the input lines of a digital input subdevice, however, this will necessarily be device
dependent. Each possible digital line that can be matched is assigned a bit in the mask and pattern. A bit set in the mask indicates
that the input line must match the corresponding bit in the pattern. A bit cleared in the mask indicates that the input line is
ignored.

Notes: This only allows 32 bits in the pattern/mask, which may be too few. Devices may support selecting different sets of lines
from which to match a pattern.

Discovery: The number of bits can be discovered by setting the mask to all 1’s. The driver must modify this value and return
—-EAGAIN.

4.7.7 Counter configuration

(Status: design. No driver implements this feature yet.)
The insn field of the instruction data structure has not been assigned yet.

The chanspec field of the instruction data structure is used to specify which counter to use. (Le., the counter is a Comedi
channel.)

The data field of the instruction data structure is used as follows:

data[1] trigger configuration.

data[2] primary input chanspec.

data[3] primary combining machine configuration.
data[4] secondary input chanspec.

data[5] secondary combining machine configuration.

data[6] latch configuration.

http://www.comedi.org

Comedi
27 /148

Note that this configuration is only useful if the counting has to be done in software. Many cards offer configurable counters in
hardware; e.g., general purpose timer cards can be configured to act as pulse generators, frequency counters, timers, encoders,
etc.

Counters can be operated either in synchronous mode (using INSN_READ) or asynchronous mode (using commands), similar to
analog input subdevices. The input signal for both modes is the accumulator. Commands on counter subdevices are almost always
specified using scan_begin_src = TRIG_OTHER, with the counter configuration also serving as the extended configuration
for the ‘scan begin’ source.

Counters are made up of an accumulator and a combining machine that determines when the accumulator should be incremented
or decremented based on the values of the input signals. The combining machine optionally determines when the accumulator
should be latched and put into a buffer. This feature is used in asynchronous mode.

Note: How to access multiple pieces of data acquired at each event?

4.7.8 One source plus auxiliary counter configuration

(Status: design. No driver implements this feature yet.)
The insn field of the instruction data structure has not been assigned yet.
The chanspec field of the instruction data structure is used to . ..

The data field of the instruction data structure is used as follows:

data[1] is flags, including the flags for the command triggering configuration. If a command is not subsequently issued on the
subdevice, the command triggering portion of the flags are ignored.

data[2] determines the mode of operation. The mode of operation is actually a bitfield that encodes what to do for various
transitions of the source signals.

data[3], data[4] determine the primary source for the counter, similar to the ... _src and the ..._arg fields used in the
command data structure.

Notes: How to specify which events cause a latch and push, and what should get latched?

4.7.9 National instruments RTSI trigger bus

A number of NI boards support the RTSI (Real Time System Integration) bus. It’s primary use is to synchronize multiple DAQ
cards. On PXI boards, the RTSI lines correspond to the PXI trigger lines 0 to 7. PCI boards use cables to connect to their
RTSI ports. The RTSI bus consists of 8 digital signal lines numbered 0 to 7 that are bi-directional. Each of these signal lines
can be configured as an input or output, and the signal appearing on the output of each line can be configured to one of several
internal board timing signals (although on older boards RTSI line 7 can only be used for the clock signal). The ni_pcimio,
ni_atmio, and ni_mio_cs drivers expose the RTSI bus as a digital I/O subdevice (subdevice number 10).

The functions comedi_dio_config() and comedi_dio_get_config() can be used on the RTSI subdevice to set/query
the direction (input or output) of each of the RTSI lines individually.

The subdevice also supports the INSN_CONFIG_SET_CLOCK_SRC and INSN_CONFIG_GET_CLOCK_SRC configuration
instructions, which can be used to configure/query what source the board uses to synchronize its master clock to. The various
possibilities are defined in the comedi . h header file:

Clock Source Description
NI_MIO_INTERNAL_CLOCK Use the board’s internal oscillator.

Use the RTSI line 7 as the master clock. This source is only
NI_MIO_RTSI_CLOCK supported on pre-m-series boards. The newer m-series

boards use NI_MIO_PLL_RTSI_CLOCK() instead.
Only available for newer m-series PXI boards.
NI_MIO_PLIL_PXI_ STAR_TRIGGER_CLOCK Synchronizes the board’s phased-locked loop (which runs
at 80MHz) to the PXI star trigger line.

Comedi
28/148

Clock Source Description

Only available for newer m-series PXI boards.
Synchronizes the board’s phased-locked loop (which runs
at 80OMHz) to the 10 MHz PXI backplane clock.

Only available for newer m-series boards. The function
returns a clock source which will cause the board’s
phased-locked loop (which runs at 80MHz) to syncronize

to the RTSI line specified in the function argument.

NI_MIO_PLL_PXI10_CLOCK

NI_MIO PLI_RTSI_CLOCK(n)

For all clock sources except NI_MIO_INTERNAL_CLOCK and NI_MIO_PLL_PXI10_CLOCK, you should pass the period of
the clock your are feeding to the board when using INSN_CONFIG_SET_CLOCK_SRC.

Finally, the configuration instructions INSN_CONFIG_SET_ROUTING and INSN_CONFIG_GET_ROUTING can be used to
select/query which internal signal will appear on a given RTSI output line. The header file comedi . h defines the following

signal sources which can be routed to an RTSI line:

Signal Source

Description

NI_RTSI_OUTPUT_ADR_STARTI1

ADR_STARTI, an analog input start signal. See the NI's
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_ADR_STARTZ2

ADR_START?2, an analog input stop signal. See the NI's
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_SCLKG

SCLKG, a sample clock signal. See the NI’s DAQ-STC
Technical Reference Manual for more information.

NI_RTSI_OUTPUT_DACUPDN

DACUPDN, a dac update signal. See the NI's DAQ-STC
Technical Reference Manual for more information.

NI_RTSI_OUTPUT_DA_ STARTI1

DA_START]1, an analog output start signal. See the NI's
DAQ-STC Technical Reference Manual for more
information.

NI_RTSI_OUTPUT_G_SRCO

G_SRCO, the source signal to general purpose counter 0.
See the NI’'s DAQ-STC Technical Reference Manual for
more information.

NI_RTSI_OUTPUT_G_GATEO

G_GATEQ, the gate signal to general purpose counter 0.
See the NI's DAQ-STC Technical Reference Manual for
more information.

NI_RTSI_OUTPUT_RGOUTO

RGOUTO, the output signal of general purpose counter 0.
See the NI's DAQ-STC Technical Reference Manual for
more information.

NI_RTSI_OUTPUT_RTSI_BRD(n)

RTSI_BRDO though RTSI_BRD3 are four internal signals
which can have various other signals routed to them in turn.
Currently, comedi provides no way to configure the signals
routed to the RTSI_BRD lines. See the NI's DAQ-STC
Technical Reference Manual for more information.

NI_RTSI_OUTPUT_RTSI_OSC

The RTSI clock signal. On pre-m-series boards, this signal
is always routed to RTSI line 7, and cannot be routed to
lines O through 6. On m-series boards, any RTSI line can
be configured to output the clock signal.

The RTSI bus pins may be used as trigger inputs for many of the Comedi trigger functions. To use the RTSI bus pins, set the
source to be TRIG_EXT and the source argument using the return values from the NI_EXT_RTSI(n) function (or similarly the
NI_EXT_PFI(n)function if you want to trigger from a PFI line). The CR_EDGE and CR_INVERT flags may also be set on the
trigger source argument to specify edge and falling edge/low level triggering.

An example to set up a device as a master is given below.

void comediEnableMaster (comedi_t =*dev) {

http://www.comedi.org

Comedi

29/148

comedi_insn configCmd;

lsampl_t configbDatal2];

int ret;

unsigned int d = 0;

static const unsigned rtsi_subdev = 10;
static const unsigned rtsi_clock_line = 7;

/+ Route RTSI clock to line 7 (not needed on pre-m-series boards since their

clock is always on line 7). x/
memset (&configCmd, 0, sizeof (configCmd)) ;
memset (&configbData, 0, sizeof (configData));
configCmd.insn = INSN_CONFIG;
configCmd.subdev = rtsi_subdev;
configCmd.chanspec = rtsi_clock_line;
configCmd.n = 2;
configCmd.data = configData;

configCmd.data[0] = INSN_CONFIG_SET_ROUTING;
configCmd.data[l] = NI_RTSI_OUTPUT_RTSI_OSC;
ret = comedi_do_insn (dev, &configCmd) ;

if(ret < 0){

comedi_perror ("comedi_do_insn: INSN_CONFIG") ;

exit (1);
}
// Set clock RTSI line as output

ret = comedi_dio_config(dev, rtsi_subdev, rtsi_clock_line,

if(ret < 0){
comedi_perror ("comedi_dio_config");
exit (1);

/* Set routing of the 3 main AI RTSI signals and their direction to output.
We’re reusing the already initialized configCmd instruction here since

it’s mostly the same. =%/

configCmd.chanspec = 0;
configCmd.data[l] = NI_RTSI_OUTPUT_ADR_STARTI;
ret = comedi_do_insn (dev, &configCmd) ;

if(ret < 0){

comedi_perror ("comedi_do_insn: INSN_CONFIG") ;

exit (1);
}

ret = comedi_dio_config(dev, rtsi_subdev, O,

if(ret < 0){
comedi_perror ("comedi_dio_config");

INSN_CONFIG_DIO_OUTPUT) ;

exit (1);
}
configCmd.chanspec = 1;
configCmd.data[l] = NI_RTSI_OUTPUT_ADR_STARTZ2;
ret = comedi_do_insn (dev, &configCmd) ;

if(ret < 0){

comedi_perror ("comedi_do_insn: INSN_CONFIG") ;

exit (1);
}

ret = comedi_dio_config(dev, rtsi_subdev, 1,

if(ret < 0){
comedi_perror ("comedi_dio_config");

exit (1);
}
configCmd.chanspec = 2;
configCmd.data[l] = NI_RTSI_OUTPUT_SCLKG;

ret = comedi_do_insn (dev, &configCmd) ;

INSN_CONFIG_DIO_OUTPUT) ;

INSN_CONFIG_DIO_OUTPUT) ;

Comedi
30/148

if (ret < 0){
comedi_perror ("comedi_do_insn: INSN_CONFIG");
exit (1) ;
}
ret = comedi_dio_config(dev, rtsi_subdev, 2, INSN_CONFIG_DIO_OUTPUT) ;
if(ret < 0){
comedi_perror ("comedi_dio_config");
exit (1) ;

An example to slave a m-series device from this master follows. A pre-m-series device would need to use NI_MIO_RTSI_-
CLOCK for the clock source instead. In your code, you may also wish to configure the master device to use the external clock
source instead of using its internal clock directly (for best syncronization).

void comediEnableSlave (comedi_t =xdev) {

comedi_insn configCmd;

lsampl_t configbatal3];

int ret;

unsigned int d = 0;;

static const unsigned rtsi_subdev = 10;
static const unsigned rtsi_clock_line = 7;

memset (&configCmd, 0, sizeof (configCmd)) ;
memset (&configbData, 0, sizeof (configData));
configCmd.insn = INSN_CONFIG;
configCmd.subdev = rtsi_subdev;
configCmd.chanspec = 0;

configCmd.n = 3;

configCmd.data = configData;

configCmd.data[0] = INSN_CONFIG_SET_CLOCK_SRC;

configCmd.data[l] = NI_MIO_PLL_RTSI_CLOCK (rtsi_clock_line);

configCmd.data[2] = 100; /* need to give it correct external clock period */
ret = comedi_do_insn (dev, &configCmd) ;

if (ret < 0){

comedi_perror ("comedi_do_insn: INSN_CONFIG") ;

exit (1);
}
/+ configure RTSI clock line as input =/
ret = comedi_dio_config(dev, rtsi_subdev, rtsi_clock_line, INSN_CONFIG_DIO_INPUT);
if(ret < 0){

comedi_perror ("comedi_dio_config");

exit (1) ;
}
/+ Configure RTSI lines we are using for AI signals as inputs. */
ret = comedi_dio_config(dev, rtsi_subdev, 0, INSN_CONFIG_DIO_INPUT) ;
if(ret < 0){

comedi_perror ("comedi_dio_config");

exit (1) ;
}
ret = comedi_dio_config(dev, rtsi_subdev, 1, INSN_CONFIG_DIO_INPUT) ;
if(ret < 0){

comedi_perror ("comedi_dio_config");

exit (1);
}
ret = comedi_dio_config(dev, rtsi_subdev, 2, INSN_CONFIG_DIO_INPUT);
if(ret < 0){

comedi_perror ("comedi_dio_config");

exit (1);

Comedi
31/148

int comediSlaveStart (comedi_t =xdev) {

comedi_cmd cmd;

unsigned int nChannels = 8§;
double sampleRate = 50000;
unsigned int chanList [8];

int i;

// Setup chan list

for(i = 0; i < nChannels; i++) {
chanList[i] = CR_PACK (i, 0, AREF_GROUND) ;

}

// Set up command

memset (&cmd, 0, sizeof (cmd));

ret = comedi_get_cmd_generic_timed(dev, subdevice, &cmd,
(int) (1e9/ (nChannels % sampleRate)));

if (ret<0) {
printf ("comedi_get_cmd_generic_timed failed\n");
return ret;

}

cmd.chanlist

chanList;

cmd.chanlist_len = nChannels;

cmd.scan_end_arg = nChannels;

cmd.start_src = TRIG_EXT;

cmd.start_arg = CR_EDGE | NI_EXT_RTSI (0);
cmd.convert_src = TRIG_EXT;

cmd.convert_arg = CR_INVERT | CR_EDGE | NI_EXT_RTSI(2);
cmd.stop_src = TRIG_NONE;

ret = comedi_command (dev0, &cmdO0) ;

1f (ret<0) {
printf ("comedi_command failed\n");
return ret;

}

return 0;

5 Comedi reference

5.1 Headerfiles: comedi.h and comedilib.h

All application programs must include the header file comedilib.h. (This file itself includes comedi . h.) They contain the
full interface of Comedi: defines, function prototypes, data structures.

The following Sections give more details.

5.2 Constants and macros

5.21 CR_PACK

CR_PACK(chan, rng, aref) is used to initialize the elements of the chanlist array in the comedi_cmd data structure, and the
chanspec member of the comedi_insn structure.

#define CR_PACK (chan, rng, aref) ((((aref)&0x3)<<24) | (((rng)&0xff)<<le) | (chan))

The chan argument is the channel you wish to use, with the channel numbering starting at zero.

http://www.comedi.org
http://www.comedi.org

Comedi
32/148

The range rng is an index, starting at zero, whose meaning is device dependent. The comedi_get_n_ranges() and come-
di_get_range() functions are useful in discovering information about the available ranges.

The aref argument indicates what reference you want the device to use. It can be any of the following:

AREF_GROUND is for inputs/outputs referenced to ground.
AREF_COMMON is for a ‘common’ reference (the low inputs of all the channels are tied together, but are isolated from ground).
AREF_DIFF is for differential inputs/outputs.

AREF_OTHER is for any reference that does not fit into the above categories.

Particular drivers may or may not use the AREF flags. If they are not supported, they are silently ignored.

5.2.2 CR_PACK_FLAGS

CR_PACK_FLAGS(chan, range, aref, flags) is similar to CR_PACK() but can be used to combine one or more flag bits
(bitwise-ORed together in the f1ags parameter) with the other parameters.

#define CR_PACK_FLAGS (chan, range, aref, flags) \
(CR_PACK (chan, range, aref) | ((flags) & CR_FLAGS_MASK))

Depending on context, the chan parameter might not be a channel; it could be a trigger source, clock source, gate source etc.
(in which case, the range and aref parameters would probably be set to 0), and the flags would modify the source in some
device-dependant way.

The following flag values are defined:

CR_ALT_FILTER,CR _DITHER, CR_DEGLITCH (all the same) specify that some sort of filtering is to be done on the channel,
trigger source, etc.

CR_ALT_SOURCE specifies that some alternate source is to be used for the channel (usually a calibration source).

CR_EDGE is usually combined with a trigger source number to specify that the trigger source is edge-triggered if the hardware
and driver supports both edge-triggering and level-triggering. If both are supported, not asserting this flag specifies level-
triggering.

CR_INVERT specifies that the trigger source, gate source, etc. is to be inverted.

5.2.3 RANGE_LENGTH (deprecated)

Rangetype values are library-internal tokens that represent an array of range information structures. These numbers are primarily
used for communication between the kernel and library.

The RANGE__LENGTH(rangetype) macro returns the length of the array that is specified by the rangetype token.

The RANGE_LENGTH() macro is deprecated, and should not be used in new applications. It is scheduled to be removed from the
header file at version 1.0. Binary compatibility may be broken for version 1.1.

5.2.4 enum comedi_conversion_direction

enum comedi_conversion_direction

{
COMEDI_TO_PHYSICAL,
COMEDI_FROM_PHYSICAL

bi

A comedi_conversion_direction is used to choose between converting data from Comedi’s integer sample values to a physical
value (COMEDI_TO_PHYSICAL), and converting from a physical value to Comedi’s integer sample values (COMEDI_FROM-
_PHYSICAL).

Comedi

33/148

5.2.5 enum comedi_io_direction

enum comedi_io_direction

{

COMEDI_INPUT,
COMEDI_OUTPUT

bi

A comedi_io_direction is used to select between input or output. For example, comedi_dio_config() uses the COMEDI_-
INPUT and COMEDI_OUTPUT values to specify whether a configurable digital i/o channel should be configured as an input or

output.

5.2.6 enum comedi_subdevice_type

enum comedi_subdevice_type {
COMEDI_SUBD_UNUSED, /% subdevice is unused by driver =/
COMEDI_SUBD_AI, /% analog input =/
COMEDI_SUBD_AO, /% analog output =/
COMEDI_SUBD_DI, /* digital input =/
COMEDI_SUBD_DO, /% digital output =*/
COMEDI_SUBD_DIO, /x digital input/output =/
COMEDI_SUBD_COUNTER, /* counter =*/
COMEDI_SUBD_TIMER, /* timer x/
COMEDI_SUBD_MEMORY, /% memory, EEPROM, DPRAM x*/
COMEDI_SUBD_CALIB, /* calibration DACs and potsx*/
COMEDI_SUBD_PROC, /* processor, DSP x/
COMEDI_SUBD_SERIAL, /* serial IO */
COMEDI_SUBD_PWM /% pulse width modulation =/

bi

The comedi_subdevice_type enumeration specifies the possible values for a subdevice type. These values are used by the func-
tions comedi_get_subdevice_type() and comedi_find_subdevice_by_type().

5.3 Data types and structures

This Section explains the data structures that users of the Comedi API are confronted with:

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

comedi_devinfo_struct comedi_devinfo;
comedi_t_struct comedi_t;
sampl_t_struct sampl_t;
lsampl_t_struct lsampl_t;
comedi_sv_t_struct comedi_sv_t;
comedi_cmd_struct comedi_cmd;
comedi_insn_struct comedi_insn;
comedi_range_struct comedi_range;
comedi_krange_struct comedi_krange;

comedi_insnlist_struct comedi_insnlist;

The data structures used in the implementation of the Comedi drivers are described in Section 6.2.1.

5.3.1 comedi_devinfo

The data type comedi_devinfo is used to store information about a device. This structure is usually filled in automatically when
the driver is loaded (‘attached’), so programmers need not access this data structure directly.

http://www.comedi.org
http://www.comedi.org

Comedi

34/148
typedef struct comedi_devinfo_struct comedi_devinfo;
struct comedi_devinfo_struct{
unsigned int version_code; // version number of the Comedi code
unsigned int n_subdevs; // number of subdevices on this device
char driver_name [COMEDI_NAMELEN] ;
char board_name [COMEDI_NAMELEN] ;
int read_subdevice; // index of subdevice whose buffer is read by read(), etc. <«
on file descriptor from comedi_fileno() (negative means none)
int write_subdevice; // index of subdevice whose buffer is written by write(), <+
etc. on file descriptor from comedi_fileno() (negatove means none) .
int unused[30];

bi

5.3.2 comedi_t

The data type comedi_t is used to represent an open Comedi device:

typedef struct comedi_t_struct comedi_t;

A valid comedi_t pointer is returned by a successful call to comedi_open(), and should be used for subsequent access to the
device. It is an opaque type, and pointers to type comedi_t should not be dereferenced by the application.

5.3.3 sampl_t

typedef unsigned short sampl_t;

The data type sampl_t is one of the generic types used to represent data values in Comedilib. It is used in a few places where a
data type shorter than Isampl_t is useful. On most architectures it is a 16-bit, unsigned integer.

Most drivers represent data transferred by read() and write() functions using sampl_t. Applications should check the subde-
vice flag SDF_LSAMPL to determine if the subdevice uses sampl_t or Isampl_t.

5.3.4 Isampl_t

typedef unsigned int lsampl_t;

The data type Isampl_t is the data type typically used to represent data values in Comedilib. On most architectures it is a 32-bit,
unsigned integer.

5.3.5 comedi_trig (deprecated)

typedef struct comedi_trig_struct comedi_trig;

struct comedi_trig_struct{
unsigned int subdev; /* subdevice «*/
unsigned int mode; /% mode x/
unsigned int flags;
unsigned int n_chan; /* number of channels =%/
unsigned int *chanlist; /+ channel/range list =/
sampl_t =xdata; /+ data list, size depends on subd flags x/
unsigned int n; /* number of scans x/
unsigned int trigsrc;
unsigned int trigvar;

http://www.comedi.org

Comedi
35/148

unsigned int trigvarl;

unsigned int data_len;

unsigned int unused[3];
}i

The comedi_trig structure is a control structure used by the COMEDI_TRIG ioctl, an older method of communicating instructions
to the driver and hardware. Use of comedi_trig is deprecated, and is no longer implemented by the Comedi kernel layer.

5.3.6 comedi_sv_t (deprecated)

typedef struct comedi_sv_struct comedi_sv_t;

struct comedi_sv_struct/{
comedi_t =*dev;
unsigned int subdevice;
unsigned int chan;

/* range policy =/
int range;
int aref;

/* number of measurements to average (for ai) =/
int n;

lsampl_t maxdata;
bi

The comedi_sv_t structure is used by the comedi_sv_. . .() functions to provide a simple method of accurately measuring

slowly varying inputs. This relies on the COMEDI_TRIG ioctl and is no longer by the Comedi kernel layer.

5.3.7 comedi_cmd

typedef struct comedi_cmd_struct comedi_cmd;

struct comedi_cmd_struct{
unsigned int subdev;
unsigned int flags;

unsigned int start_src;
unsigned int start_arg;

unsigned int scan_begin_src;
unsigned int scan_begin_arg;

unsigned int convert_src;
unsigned int convert_arg;

unsigned int scan_end_src;
unsigned int scan_end_arg;

unsigned int stop_src;
unsigned int stop_arg;

unsigned int =xchanlist;
unsigned int chanlist_len;

sampl_t =xdata;
unsigned int data_len;

}i

http://www.comedi.org
http://www.comedi.org

Comedi
36/148

More information on using commands can be found in the command section.

5.3.8 comedi_insn

typedef struct comedi_insn_struct comedi_insn;

struct comedi_insn_struct/{
unsigned int insn;
unsigned int nj;
lsampl_t=xdata;
unsigned int subdev;
unsigned int chanspec;
unsigned int unused[3];

}i

Comedi instructions are described by the comedi_insn structure. Applications send instructions to the driver in order to perform
control and measurement operations that are done immediately or synchronously, i.e., the operations complete before program
control returns to the application. In particular, instructions cannot describe acquisition that involves timers or external events.

The field insn determines the type of instruction that is sent to the driver. Valid instruction types are:

INSN_READ read values from an input channel
INSN_WRITE write values to an output channel

INSN_BITS read/write values on multiple digital I/O channels
INSN_CONFIG configure a subdevice

INSN_GTOD read a timestamp, identical to gettimeofday() except the seconds and microseconds values are of type
Isampl_t.

INSN_WAIT wait a specified number of nanoseconds

The number of samples to read or write, or the size of the configuration structure is specified by the field n, and the buffer for
those samples by data. The field subdev is the subdevice index that the instruction is sent to. The field chanspec specifies the
channel, range, and analog reference (if applicable).

Instructions can be sent to drivers using comedi_do_insn(). Multiple instructions can be sent to drivers in the same system
call using comedi_do_insnlist().

5.3.9 comedi_range

typedef struct comedi_range_struct comedi_range;

struct comedi_range_struct({
double min;
double max;
unsigned int unit;
}comedi_range;

The comedi_range structure conveys part of the information necessary to translate sample values to physical units, in particular,
the endpoints of the range and the physical unit type. The physical unit type is specified by the field unit, which may take the
values UNIT_volt for volts, UNIT_mA for milliamps, or UNIT_none for unitless. The endpoints are specified by the fields
min and max.

Comedi
37/148

5.3.10 comedi_krange

typedef struct comedi_krange_struct comedi_krange;

struct comedi_krange_struct{
int min;
int max;
unsigned int flags;

bi

The comedi_krange structure is used to transfer range information between the driver and Comedilib, and should not normally
be used by applications. The structure conveys the same information as the comedi_range structure, except the fields min and
max are integers, multiplied by a factor of 1000000 compared to the counterparts in comedi_range.

In addition, kcomedi1ib uses the comedi_krange structure in place of the comedi_range structure.

5.3.11 comedi_insnlist

typedef struct comedi_insnlist_struct comedi_insnlist;
struct comedi_insnlist_struct{
unsigned int n_insns;

comedi_insn xinsns;

}i

A comedi_insnlist structure is used to communicate a list of instructions to the driver using the comedi_do_insnlist()
function.

5.3.12 comedi_polynomial_t

#define COMEDI_MAX_NUM_POLYNOMIAL_COEFFICIENTS 4

typedef struct {
double coefficients[COMEDI_MAX NUM_POLYNOMIAIL_ COEFFICIENTS];
double expansion_origin;

unsigned order;
} comedi_polynomial_t;

A comedi_polynomial_t holds calibration data for a channel of a subdevice. It is initialized by the comedi_get_hardcal-
_converter() or comedi_get_softcal_converter() calibration functions and is passed to the comedi_to_phys—
ical() and comedi_from_physical() raw/physical conversion functions.

5.4 Functions

5.4.1 Core Functions

5.4.1.1 comedi_close

comedi_close — close a Comedi device

Synopsis

#include <comedilib.h>

int comedi_close(comedi * device);

Comedi
38/148

Description

Close a device previously opened by comedi_open().

Return value

If successful, comedi_close() returns 0. On failure, —1 is returned.

5.4.1.2 comedi_data_read

comedi_data_read — read single sample from channel

Synopsis

#include <comedilib.h>

int comedi_data_read(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
Isampl_t * data);

Description

Reads a single sample on the channel specified by the Comedi device device, the subdevice subdevice, and the channel ch-
annel. For the A/D conversion (if appropriate), the device is configured to use range specification range and (if appropriate)
analog reference type aref. Analog reference types that are not supported by the device are silently ignored.

The function comedi_data_read() reads one data value from the specified channel and stores the value in *data.

WARNING: comedi_data_read() does not do any pausing to allow multiplexed analog inputs to settle before starting an
analog to digital conversion. If you are switching between different channels and need to allow your analog input to settle for an
accurate reading, use comedi_data_read_delayed(), or set the input channel at an earlier time with comedi_data_r-
ead_hint().

Data values returned by this function are unsigned integers less than or equal to the maximum sample value of the channel, which
can be determined using the function comedi_get_maxdata(). Conversion of data values to physical units can be performed
by the functions comedi_to_phys() (linear conversion) or comedi_to_physical() (non-linear polynomial conversion).

Return value

On success, comedi_data_read() returns 1 (the number of samples read). If there is an error, —1 is returned.

5.4.1.3 comedi_data read_n

comedi_data_read_n — read multiple samples from channel

Synopsis

#include <comedilib.h>

int comedi_data_read_n(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
Isampl_t * data, unsigned int n);
Description

Similar to comedi_data_read() except it reads n samples into the array data. The precise timing of the samples is not
hardware controlled.

Comedi
39/148

5.4.1.4 comedi_data_read_delayed

comedi_data_read_delayed — read single sample from channel after delaying for specified settling time

Synopsis

#include <comedilib.h>

int comedi_data_read_delayed(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned
int aref, Isampl_t * data, unsigned int nanosec);
Description

Similar to comedi_data_read() except it will wait for the specified number of nanoseconds between setting the input channel
and taking a sample. For analog inputs, most boards have a single analog to digital converter which is multiplexed to be able to
read multiple channels. If the input is not allowed to settle after the multiplexer switches channels, the reading will be inaccurate.
This function is useful for allowing a multiplexed analog input to settle when switching channels.

Although the settling time is specified in nanoseconds, the actual settling time will be rounded up to the nearest microsecond.

5.4.1.5 comedi_data_read_hint

comedi_data_read_hint — tell driver which channel/range/aref you are going to read from next

Synopsis

#include <comedilib.h>

int comedi_data_read_hint(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int
aref);
Description

Used to prepare an analog input for a subsequent call to comedi_data_read(). It is not necessary to use this function, but it
can be useful for eliminating inaccuracies caused by insufficient settling times when switching the channel or gain on an analog
input. This function sets an analog input to the channel, range, and aref specified but does not perform an actual analog to digital
conversion.

Alternatively, one can simply use comedi_data_read_delayed(), which sets up the input, pauses to allow settling, then
performs a conversion.

5.4.1.6 comedi_data_write

comedi_data_write — write single sample to channel
Synopsis
#include <comedilib.h>

int comedi_data_write(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned int aref,
Isampl_t data);

Comedi
40/148

Description
Writes a single sample on the channel that is specified by the Comedi device device, the subdevice subdevice, and the channel

channel. If appropriate, the device is configured to use range specification range and analog reference type aref. Analog
reference types that are not supported by the device are silently ignored.

The function comedi_data_write() writes the data value specified by the parameter data to the specified channel.

Return value

On success, comedi_data_write() returns 1 (the number of samples written). If there is an error, —1 is returned.

5.4.1.7 comedi_do_insn

comedi_do_insn — perform instruction

Synopsis

#include <comedilib.h>

int comedi_do_insn(comedi_t * device, comedi_insn * instruction);

Description

The function comedi_do_insn() performs a single instruction.

Return value

If successful, returns a non-negative number. For the case of INSN_READ or INSN_WRITE instructions, comedi_do_insn()
returns the number of samples read or written, which may be less than the number requested. If there is an error, -1 is returned.

5.4.1.8 comedi_do_insnlist

comedi_do_insnlist — perform multiple instructions

Synopsis

#include <comedilib.h>

int comedi_do_insnlist(comedi_t * device, comedi_insnlist * list);

Description

The function comedi_do_insnlist() performs multiple Comedi instructions as part of one system call. This function can
be used to avoid the overhead of multiple system calls.

Return value

The function comedi_do_insnlist() returns the number of successfully completed instructions. Error information for the
unsuccessful instruction is not available. If there is an error before the first instruction can be executed, —1 is returned.

Comedi
41/148

5.4.1.9 comedi_fileno

comedi_fileno — get file descriptor for open Comedilib device

Synopsis

#include <comedilib.h>

int comedi_fileno(comedi_t * device);

Description

The function comedi_fileno() returns the file descriptor for the device device. This descriptor can then be used as the file
descriptor parameter of read(), write(), etc. This function is intended to mimic the standard C library function £ileno().

The returned file descriptor should not be closed, and will become invalid when comedi_close() is called on device.

Return value

A file descriptor, or —1 on error.

5.4.1.10 comedi_find_range

comedi_find_range — search for range

Synopsis

#include <comedilib.h>

int comedi_find_range(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int unit, double min, double
max);
Description

The function comedi_find_range() tries to locate the optimal (smallest) range for the channel channel belonging to sub-
device subdevice of the comedi device device, that includes both min and max in units of unit.

Return value

If a matching range is found, the index of the matching range is returned. If no matching range is available, the function returns
-1.

5.4.1.11 comedi_find_subdevice_by type

comedi_find_subdevice_by_type — search for subdevice type

Synopsis

#include <comedilib.h>

int comedi_find_subdevice_by_type(comedi_t * device, int type, unsigned int start_subdevice);

Comedi
42 /148

Description

The function comedi_find_subdevice_by_type() tries to locate a subdevice belonging to comedi device device, hav-
ing type type, starting with the subdevice start_subdevice. The comedi_subdevice_type enum specifies the possible subde-
vice types.

Return value

If it finds a subdevice with the requested type, it returns its index. If there is an error, the function returns —1 and sets the
appropriate error.

5.4.1.12 comedi_from_phys

comedi_from_phys — convert physical units to sample

Synopsis

#include <comedilib.h>

Isampl_t comedi_from_phys(double data, comedi_range * range, Isampl_t maxdata);

Description

Converts parameter data given in physical units (double) into sample values (Isampl_t, between 0 and maxdata). The parameter
range represents the conversion information to use, and the parameter maxdata represents the maximum possible data value
for the channel that the data will be written to. The mapping between physical units and raw data is linear and assumes that the
converter has ideal characteristics.

Conversion is not affected by out-of-range behavior. Out-of-range data parameters are silently truncated to the range 0 to maxd-
ata.

5.4.1.13 comedi_from_physical

comedi_from_physical — convert physical units to sample using calibration data

Synopsis

#include <comedilib.h>

Isampl_t comedi_from_physical(double data, const comedi_polynomial_t * conversion_polynomial);

Description

Converts data given in physical units into Comedi’s integer sample values (Isampl_t, between 0 and maxdata — see comed-
i_get_maxdata()). The conversion_polynomial parameter is obtained from either comedi_get_hardcal_conv-—
erter()or comedi_get_softcal_converter(). The allows non linear and board specific correction. The result will be
rounded using the C library’s current rounding direction. No range checking of the input data is performed. It is up to you to
ensure your data is within the limits of the output range you are using.

Return value

Comedi sample value corresponding to input physical value.

Comedi
43/148

5.4.1.14 comedi_get_board_name

comedi_get_board_name — Comedi device name

Synopsis

#include <comedilib.h>

const char * comedi_get_board_name(comedi_t * device);

Description

The function comedi_get_board_name() returns a pointer to a string containing the name of the comedi device represented
by device. This pointer is valid until the device is closed. This function returns NULL if there is an error.

5.4.1.15 comedi_get_driver_name

comedi_get_driver_name — Comedi driver name

Synopsis

#include <comedilib.h>

char * comedi_get_driver_name(comedi_t * device);

Description

The function comedi_get_driver_name() returns a pointer to a string containing the name of the driver being used by
comedi for the comedi device represented by device. This pointer is valid until the device is closed. This function returns NULL
if there is an error.

5.4.1.16 comedi_get_maxdata

comedi_get_maxdata — maximum sample of channel
Synopsis
#include <comedilib.h>

Isampl_t comedi_get_maxdata(comedi_t * device, unsigned int subdevice, unsigned int channel);

Description

The function comedi_get_maxdatal() returns the maximum valid data value for channel channel of subdevice subdevice
belonging to the comedi device device.

Return value

The maximum valid sample value, or O on error.

Comedi
44 /148

5.4.1.17 comedi_get_n_channels

comedi_get_n_channels — number of subdevice channels
Synopsis
#include <comedilib.h>

int comedi_get_n_channels(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_n_channels() returns the number of channels of the subdevice subdevice belonging to the
comedi device device. This function returns —1 on error and the Comedilib error value is set.

5.4.1.18 comedi_get_n_ranges

comedi_get_n_ranges — number of ranges of channel
Synopsis
#include <comedilib.h>

int comedi_get_n_ranges(comedi_t * device, unsigned int subdevice, unsigned int channel);

Description

The function comedi_get_n_ranges() returns the number of ranges of the channel channel belonging to the subdevice
subdevice of the comedi device device. This function returns —1 on error.

5.4.1.19 comedi_get_n_subdevices

comedi_get_n_subdevices — number of subdevices
Synopsis
#include <comedilib.h>

int comedi_get_n_subdevices(comedi_t * device);

Description

The function comedi_get_n_subdevices() returns the number of subdevices belonging to the Comedi device referenced
by the parameter device, or —1 on error.

5.4.1.20 comedi_get_range

comedi_get_range — range information of channel

Comedi
45/148

Synopsis

#include <comedilib.h>

comedi_range * comedi_get_range(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range);

Description
The function comedi_get_range() returns a pointer to a comedi_range structure that contains information on the range

specified by the subdevice, channel, and range parameters. The pointer is valid until the Comedi device device is closed.
If there is an error, NULL is returned.

5.4.1.21 comedi_get_subdevice_flags

comedi_get_subdevice_flags — properties of subdevice
Synopsis
#include <comedilib.h>

int comedi_get_subdevice_flags(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_subdevice_flags() returns a bitfield describing the capabilities of the specified subdevice
subdevice of the Comedi device device. If there is an error, —1 is returned, and the Comedilib error value is set.

Subdevice Flag Value (hex) Description

The subdevice is busy performing an
asynchronous command. A subdevice
being ‘busy’ is slightly different from
the ‘running’ state flagged by
SDF_RUNNING. A ‘running’
subdevice is always ‘busy’, but a
‘busy’ subdevice is not necessarily
SDF_BUSY 0x00000001 ‘running’. For example, suppose an
analog input command has been
completed by the hardware, but there
are still samples in Comedi’s buffer
waiting to be read out. In this case, the
subdevice is not ‘running’, but is still
‘busy’ until all the samples are read
out or comedi_cancel() is called.
The subdevice is ‘busy’, and the
SDF_BUSY_OWNER 0x00000002 command it is running was started by
the current process.

The subdevice has been locked by

SDF_LOCKED 0x00000004 comedi_lock().

SDF_LOCK_OWNER 0%00000008 The subdevice is locked, and was
locked by the current process.

SDF_MAXDATA 0200000010 The maximum data value for the

subdevice depends on the channel.
The subdevice flags depend on the
SDF_FLAGS 0x00000020 channel (unfinished/broken support in
library).

Comedi

46 /148

Subdevice Flag

Value (hex)

Description

SDEF_RANGETYPE

0x00000040

The range type depends on the
channel.

SDF_CMD

0x00001000

The subdevice supports asynchronous
commands.

SDF_SOFT_CALIBRATED

0x00002000

The subdevice relies on the host to do
calibration in software. Software
calibration coefficients are determined
by the comedi_soft_calibrate utility.
See the description of the comedi_ -
get_softcal_converter()
function for more information.

SDF_READABLE

0x00010000

The subdevice can be read (e.g.
analog input).

SDF_WRITABLE

0x00020000

The subdevice can be written to (e.g.
analog output).

SDF_INTERNAL

0x00040000

The subdevice does not have
externally visible lines.

SDF_GROUND

0x00100000

The subdevice supports analog
reference AREF__GROUND.

SDE_COMMON

0x00200000

The subdevice supports analog
reference AREF_ COMMON.

SDF_DIFF

0x00400000

The subdevice supports analog
reference AREF_DIFF.

SDF_OTHER

0x00800000

The subdevice supports analog
reference AREF_OTHER

SDF_DITHER

0x01000000

The subdevice supports dithering (via
the CR_ALT_FILTER chanspec flag).

SDF_DEGLITCH

0x02000000

The subdevice supports deglitching
(via the CR_ALT_FILTER chanspec
flag).

SDE_RUNNING

0x08000000

An asynchronous command is
running. You can use this flag to poll
for the completion of an output
command.

SDF_LSAMPL

0x10000000

The subdevice uses the 32-bit Isampl_t
type instead of the 16-bit sampl_t for
asynchronous command data.

SDF_PACKED

0x20000000

The subdevice uses bitfield samples
for asynchronous command data, one
bit per channel (otherwise it uses one
sampl_t or Isampl_t per channel).
Commonly used for digital
subdevices.

5.4.1.22 comedi_get_subdevice_type

comedi_get_subdevice_type — type of subdevice

Synopsis

#include <comedilib.h>

int comedi_get_subdevice_type(comedi_t * device, unsigned int subdevice);

Comedi
47 /148

Description

The function comedi_get_subdevice_type() returns an integer describing the type of subdevice that belongs to the
comedi device device and has the subdevice index subdevice. The comedi_subdevice_type enum specifies the possible
values for the subdevice type.

Return value

The function returns the subdevice type, or —1 if there is an error.

5.4.1.23 comedi_get_version_code

comedi_get_version_code — Comedi version code

Synopsis

#include <comedilib.h>

int comedi_get_version_code(comedi_t * device);

Description

Returns the Comedi kernel module version code. A valid Comedi device referenced by the parameter device is necessary to
communicate with the kernel module. On error, —1 is returned.

The version code is encoded as a bitfield of three 8-bit numbers. For example, 0x00073d is the version code for version 0.7.61.
This function is of limited usefulness. A typical mis-application of this function is to use it to determine if a certain feature is
supported. If the application needs to know of the existence of a particular feature, an existence test function should be written
and put in the Comedilib source.

5.4.1.24 comedi_internal_trigger

comedi_internal_trigger — generate soft trigger

Synopsis

#include <comedilib.h>

int comedi_internal_trigger(comedi_t * device, unsigned int subdevice, unsigned int trig_num);

Description

This function sends an INSN_INTTRIG instruction to a subdevice, which causes an internal triggering event. This event can,
for example, trigger a subdevice to start an asynchronous command.

The trig_num parameter is reserved for future use, and should be set to 0. It is likely it will be used in the future to support
multiple independent internal triggers. For example, an asynchronous command might be specified for a subdevice witha start-
_srcof TRIG_INT, and a start_arg of 5. Then the start event would only be triggered if comedi_internal_trigger()
were called on the subdevice with a t rig_num equal to the same value of 5.

Return value

0 on success, —1 on error.

Comedi
48 /148

5.4.1.25 comedi_lock

comedi_lock — subdevice reservation

Synopsis

#include <comedilib.h>

int comedi_lock(comedi_t * device, unsigned int subdevice);

Description

The function comedi_lock() reserves a subdevice for use by the current process. While the lock is held, no other process is
allowed to read, write, or configure that subdevice, although other processes can read information about the subdevice. The lock
is released by comedi_unlock(), or when comedi_close()is called on device.

Return value

If successful, 0 is returned. If there is an error, —1 is returned.

5.4.1.26 comedi_maxdata_is_chan_specific

comedi_maxdata_is_chan_specific — maximum sample depends on channel
Synopsis

#include <comedilib.h>

int comedi_maxdata_is_chan_specific(comedi_t * device, unsigned int subdevice);

Description

If each channel of the specified subdevice may have different maximum sample values, this function returns 1. Otherwise, this
function returns 0. On error, this function returns —1.

5.4.1.27 comedi_open

comedi_open — open a Comedi device
Synopsis

#include <comedilib.h>

comedi_t * comedi_open(const char * filename);

Description

Open a Comedi device specified by the file filename.

Return value

If successful, comedi_open() returns a pointer to a valid comedi_t structure. This structure is opaque; the pointer should not
be dereferenced by the application. NULL is returned on failure.

Comedi
49 /148

5.4.1.28 comedi_range_is_chan_specific

comedi_range_is_chan_specific — range information depends on channel

Synopsis

#include <comedilib.h>

int comedi_range_is_chan_specific(comedi_t * device, unsigned int subdevice);

Description

If each channel of the specified subdevice may have different range information, this function returns 1. Otherwise, this function
returns 0. On error, this function returns —1.

5.4.1.29 comedi_set_global_oor_behavior

comedi_set_global_oor_behavior — out-of-range behavior

Synopsis

#include <comedilib.h>

enum comedi_oor_behavior comedi_set_global_oor_behavior(enum comedi_oor_behavior behavior);

Description

This function changes the Comedilib out-of-range behavior. This currently affects the behavior of comedi_to_phys() when
converting endpoint sample values, that is, sample values equal to 0 or maxdata. If the out-of-range behavior is set to COMEDI —
_OOR_NAN, endpoint values are converted to NAN. If the out-of-range behavior is set to COMEDI__OOR_NUMBER, the endpoint
values are converted similarly to other values.

Return value

The previous out-of-range behavior is returned.

5.4.1.30 comedi_to_phys

comedi_to_phys — convert sample to physical units

Synopsis

#include <comedilib.h>

double comedi_to_phys(Isampl_t data, comedi_range * range, Isampl_t maxdata);

Comedi
50/148

Description
Converts parameter data given in sample values (Isampl_t, between 0 and maxdata) into physical units (double). The parameter

range represents the conversion information to use, and the parameter maxdata represents the maximum possible data value
for the channel that the data was read. The mapping between physical units is linear and assumes ideal converter characteristics.

Conversion of endpoint sample values, that is, sample values equal to 0 or maxdata, is affected by the Comedilib out-of-range
behavior (see function comedi_set_global_oor_behavior>()). If the out-of-range behavior is set to COMEDI_OOR_—
NAN, endpoint values are converted to NAN. If the out-of-range behavior is set to COMEDI_OOR_NUMBER, the endpoint values
are converted similarly to other values.

If there is an error, NAN is returned.

5.4.1.31 comedi_to_physical

comedi_to_physical — convert sample to physical units using polynomials

Synopsis

#include <comedilib.h>

double comedi_to_physical(Isampl_t data, const comedi_polynomial_t * conversion_polynomial);

Description
Converts data given in Comedi’s integer sample values (Isampl_t, between 0 and maxdata) into physical units (double). The
conversion_polynomial parameter is obtained from either comedi_get_hardcal_converter()or comedi_get_ -

softcal_converter(). No range checking of the input data is performed. It is up to you to check for data values of 0 or
maxdata if you want to detect possibly out-of-range readings.

Return value

Physical value corresponding to the input sample value.

5.4.1.32 comedi_unlock

comedi_unlock — subdevice reservation

Synopsis

#include <comedilib.h>

int comedi_unlock(comedi_t * device, unsigned int subdevice);

Description

The function comedi_unlock() releases a subdevice locked by comedi_1ock().

Return value

0 on success, otherwise —1.

Comedi
51/148

5.4.2 Asynchronous commands

5.4.2.1 comedi_cancel

comedi_cancel — stop streaming input/output in progress

Synopsis

#include <comedilib.h>

int comedi_cancel(comedi_t * device, unsigned int subdevice);

Description

The function comedi_cancel() can be used to stop a command previously started by comedi_ command() which is still in
progress on the subdevice indicated by the parameters device and subdevice.

Return value

If successful, 0 is returned, otherwise —1.

5.4.2.2 comedi_command

comedi_command — start streaming input/output

Synopsis

#include <comedilib.h>

int comedi_command(comedi_t * device, comedi_cmd * command);

Description

The function comedi_command() starts a streaming input or output. The command structure pointed to by command specifies
settings for the acquisition. The command must be able to pass comedi_command_test() with a return value of 0, or com—
edi_command() will fail. For input subdevices, sample values are read using the function read() on the device file. For output
subdevices, sample values are written using the function write().

Return value

If successful, 0 is returned, otherwise —1.

5.4.2.3 comedi_command_test

comedi_command_test — test streaming input/output configuration

Synopsis

#include <comedilib.h>

int comedi_command_test(comedi_t * device, comedi_cmd * command);

Comedi
52/148

Description

The function comedi_command_test() tests the command structure pointed to by the parameter command and returns an
integer describing the testing stages that were successfully passed. In addition, if elements of the comedi_cmd structure are
invalid, they may be modified. Source elements are modified to remove invalid source triggers. Argument elements are adjusted
or rounded to the nearest valid value.

The meanings of the return value are as follows:

¢ 0 indicates a valid command.

* 1 indicates that one of the . .._src members of the command contained an unsupported trigger. The bits corresponding to
the unsupported triggers are zeroed.

* 2 indicates that the particular combination of ..._src settings is not supported by the driver, or that one of the ..._src
members has the bit corresponding to multiple trigger sources set at the same time.

* 3 indicates that one of the . .._arg members of the command is set outside the range of allowable values. For instance, an
argument for a TRIG_TIMER source which exceeds the board’s maximum speed. The invalid ..._arg members will be
adjusted to valid values.

* 4 indicates that one of the . . ._arg members required adjustment. For instance, the argument of a TRIG_TIMER source may
have been rounded to the nearest timing period supported by the board.

* 5 indicates that some aspect of the command’s chanlist is unsupported by the board. For example, some analog input boards
require that all channels in the chanlist use the same input range.
5.4.2.4 comedi_get_buffer_contents

comedi_get_buffer_contents — streaming buffer status

Synopsis

#include <comedilib.h>

int comedi_get_buffer_contents(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_contents() is used on a subdevice that has a Comedi command in progress. The
number of bytes that are available in the streaming buffer is returned. If there is an error, —1 is returned.

5.4.2.5 comedi_get_buffer_offset

comedi_get_buffer_offset — streaming buffer status

Synopsis

#include <comedilib.h>

int comedi_get_buffer_offset(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_offset()isused on a subdevice that has a Comedi command in progress. This function
returns the offset in bytes of the read pointer in the streaming buffer. This offset is only useful for memory mapped buffers. If
there is an error, —1 is returned.

Comedi
53/148

5.4.2.6 comedi_get_buffer_size

comedi_get_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_get_buffer_size(comedi_t * device, unsigned int subdevice);

Description

The function comedi_get_buffer_size() returns the size (in bytes) of the streaming buffer for the subdevice specified by
device and subdevice. On error, —1 is returned.

5.4.2.7 comedi_get_cmd_generic_timed

comedi_get_cmd_generic_timed — streaming input/output capabilities

Synopsis

#include <comedilib.h>

int comedi_get_cmd_generic_timed(comedi_t * device, unsigned int subdevice, comedi_cmd * command, unsigned int chan-
list_len, unsigned int scan_period_ns);
Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed, and the results
placed in the command structure pointed to by the parameter command. The command structure pointed to by command is
modified to be a valid command that can be used as a parameter to comedi_command() (after the command has additionally
been assigned a valid chanlist array). The command measures scans consisting of chanlist_1len channels at a scan rate that
corresponds to a period of scan_period_ns nanoseconds. The rate is adjusted to a rate that the device can handle.

Return value

If successful, 0 is returned, otherwise —1.

5.4.2.8 comedi_get_cmd_src_mask

comedi_get_cmd_src_mask — streaming input/output capabilities

Synopsis

#include <comedilib.h>

int comedi_get_cmd_src_mask(comedi_t * device, unsigned int subdevice, comedi_cmd * command);

Description

The command capabilities of the subdevice indicated by the parameters device and subdevice are probed, and the results
placed in the command structure pointed to by command. The trigger source elements of the command structure are set to be the
bitwise-or of the subdevice’s supported trigger sources. Other elements in the structure are undefined.

Comedi
54 /148

Return value

If successful, 0 is returned, otherwise —1.

5.4.2.9 comedi_get_max_buffer_size

comedi_get_max_buffer_size — maximum streaming buffer size

Synopsis

#include <comedilib.h>

int comedi_get_max_buffer_size(comedi_t * device, unsigned int subdevice);

Description
The function comedi_get_max_buffer_size() returns the maximum allowable size (in bytes) of the streaming buffer
for the subdevice specified by device and subdevice. Changing the maximum buffer size can be accomplished with com—

edi_set_max_buffer_size() or with the comedi_config program, and requires appropriate privileges. On error, —1 is
returned.

5.4.2.10 comedi_get_read_subdevice

comedi_get_read_subdevice — find streaming input subdevice
Synopsis
#include <comedilib.h>

int comedi_get_read_subdevice(comedi_t * device);

Description

The function comedi_get_read_subdevice() returns the index of the subdevice whose streaming input buffer is accessible
through the device device. If there is no such subdevice, —1 is returned.

5.4.2.11 comedi_get_write_subdevice

comedi_get_write_subdevice — find streaming output subdevice
Synopsis
#include <comedilib.h>

int comedi_get_write_subdevice(comedi_t * device);

Description

The function comedi_get_write_subdevice() returns the index of the subdevice whose streaming output buffer is acces-
sible through the device device. If there is no such subdevice, —1 is returned.

Comedi
55/148

5.4.2.12 comedi_mark_buffer_read

comedi_mark_buffer_read — streaming buffer control

Synopsis

#include <comedilib.h>

int comedi_mark_buffer_read(comedi_t * device, unsigned int subdevice, unsigned int num_bytes);

Description

The function comedi_mark_buffer_read()is used on a subdevice that has a Comedi input command in progress. It should
only be used if you are using a mmap() mapping to read data from Comedi’s buffer (as opposed to calling read() on the device
file), since Comedi will automatically keep track of how many bytes have been transferred via read() calls. This function is
used to indicate that the next num_bytes bytes in the buffer are no longer needed and may be discarded.

Return value

The function comedi_mark_buffer_read() returns the number of bytes successfully marked as read, or —1 on error. The
return value may be less than num_bytes if you attempt to mark more bytes read than are currently available for reading, or
if num_bytes must be rounded down to be an exact multiple of the subdevice’s sample size (either sizeof (sampl_t) or
sizeof (1lsampl_t)).

5.4.2.13 comedi_mark_buffer_written

comedi_mark_buffer_written — streaming buffer control

Synopsis

#include <comedilib.h>

int comedi_mark_buffer_written(comedi_t * device, unsigned int subdevice, unsigned int num_bytes);

Description

The function comedi_mark_buffer_written() is used on a subdevice that has a Comedi output command in progress.
It should only be used if you are using a mmap() mapping to write data to Comedi’s buffer (as opposed to calling write() on
the device file), since Comedi will automatically keep track of how many bytes have been transferred via write() calls. This
function is used to indicate that the next num_bytes bytes in the buffer are valid and may be sent to the device.

Return value

The function comedi_mark_buffer_written() returns number of bytes successfully marked as written, or —1 on error.
The return value may be less than num_bytes if you attempt to mark more bytes written than the amount of free space currently
available in the output buffer, or if num bytes must be rounded down to be an exact multiple of the subdevice’s sample size
(either sizeof (sampl_t) or sizeof (1lsampl_t)).

5.4.2.14 comedi_poll

comedi_poll — force updating of streaming buffer

Comedi
56/148

Synopsis

#include <comedilib.h>

int comedi_poll(comedi_t * device, unsigned int subdevice);

Description

The function comedi_po11() is used on a subdevice that has a Comedi command in progress in order to update the streaming
buffer. If supported by the driver, all available samples are copied to the streaming buffer. These samples may be pending in
DMA buffers or device FIFOs. If successful, the number of additional bytes available is returned. If there is an error, —1 is
returned.

5.4.2.15 comedi_set_buffer_size

comedi_set_buffer_size — streaming buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_set_buffer_size(comedi_t * device, unsigned int subdevice, unsigned int size);

Description

The function comedi_set_buffer_size() changes the size of the streaming buffer for the subdevice specified by device
and subdevice. The buffer size will be set to si ze bytes, rounded up to a multiple of the virtual memory page size. The virtual
memory page size can be determined using sysconf (_SC_PAGE_SIZE).

This function does not require special privileges. However, it is limited to a (adjustable) maximum buffer size, which can be
changed by a privileged user calling comedi_set_max_buffer_size(), or running the program comedi_config.

Return value

The new buffer size in bytes is returned on success. On error, —1 is returned.

5.4.2.16 comedi_set_max_buffer_size

comedi_set_max_buffer_size — streaming maximum buffer size of subdevice

Synopsis

#include <comedilib.h>

int comedi_set_max_buffer_size(comedi_t * device, unsigned int subdevice, unsigned int max_size);

Description

The function comedi_set_max_buffer_size() changes the maximum allowable size (in bytes) of the streaming buffer
for the subdevice specified by device and subdevice. Changing the maximum buffer size requires the user to have appropriate
privileges.

Comedi
57 /148

Return value

The new maximum buffer size is returned on success. On error, —1 is returned.

5.4.3 Calibration

5.4.3.1 comedi_apply_calibration

comedi_apply_calibration — set hardware calibration from file

Synopsis

#include <comedilib.h>

int comedi_apply_calibration(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range, unsigned
int aref, const char * file_path);

Status

alpha

Description

The function comedi_apply_calibration() sets the hardware calibration for the subdevice specified by device and s-
ubdevice so that it is in proper calibration when using the channel specified by channel, range index specified by range
and analog reference specified by arerf. It does so by performing writes to the appropriate channels of the board’s calibration
subdevice(s). Depending on the hardware, the calibration settings used may or may not depend on the channel, range, or analog
reference. Furthermore, the calibrations appropriate for different channel, range, and analog reference parameters may not be able
to be applied simultaneously. For example, some boards cannot have their analog inputs calibrated for more than one input range
simultaneously. Applying a calibration for range 1 may blow away a previously applied calibration for range 0. Or, applying
a calibration for analog input channel 0 may cause the same calibration to be applied to all the other analog input channels as
well. Your only guarantee is that calls to comedi_apply_calibration() on different subdevices will not interfere with
each other.

In practice, their are some rules of thumb on how calibrations behave. No calibrations depend on the analog reference. A
multiplexed analog input will have calibration settings that do not depend on the channel, and applying a setting for one channel
will affect all channels equally. Analog outputs, and analog inputs with independent a/d converters for each input channel, will
have calibration settings which do depend on the channel, and the settings for each channel will be independent of the other
channels.

If you wish to investigate exactly what comedi_apply_calibration() is doing, you can perform reads on your board’s
calibration subdevice to see which calibration channels it is changing. You can also try to decipher the calibration file directly
(it’s a text file).

The file path parameter can be used to specify the file which contains the calibration information. If file path is N-
ULL, then Comedilib will use a default file location. The calibration information used by this function is generated by the
comedi_calibrate program (see its man page).

The functions comedi_parse_calibration_file(), comedi_apply_parsed_calibration(), and comedi_c—
leanup_calibration_file() provide the same functionality at a slightly lower level.

Return value

Returns 0 on success, —1 on failure.

Comedi
58/148

5.4.3.2 comedi_apply_parsed_calibration

comedi_apply_parsed_calibration — set calibration from memory

Synopsis

#include <comedilib.h>

int comedi_apply_parsed_calibration(comedi_t * device, unsigned int subdevice, unsigned int channel, unsigned int range,
unsigned int aref, const comedi_calibration_t * calibration);

Status

alpha

Description

This function is similar to comedi_apply_calibration(), except the calibration information is read from memory instead
of a file. This function can be more efficient than comedi_apply_calibration() since the calibration file does not need to
be reparsed with every call. The value of parameter calibration is obtained by a call to comedi_parse_calibration-
_file().

Return value

Returns 0 on success, —1 on failure.

5.4.3.3 comedi_cleanup_calibration

comedi_cleanup_calibration — free calibration resources
Synopsis
#include <comedilib.h>

void comedi_cleanup_calibration(comedi_calibration_t * calibration);

Status

alpha

Description

This function frees the resources associated with a comedi_calibration_t obtained from comedi_parse_calibration_f-
ile(). The comedi_calibration_t pointed to by calibration can not be used again after calling this function.

5.4.3.4 comedi_get_default_calibration_path

comedi_get_default_calibration_path — get default calibration file path

Comedi
59/148

Synopsis

#include <comedilib.h>

char * comedi_get_default_calibration_path(comedi_t * device);

Status

alpha

Description

This function returns a pointer to a string containing a default calibration file path appropriate for the Comedi device specified
by device. Memory for the string is allocated by the function, and should be freed with the C library function free() when the
string is no longer needed.

Return value

A string which contains a file path useable by comedi_parse_calibration_file(). On error, NULL is returned.

5.4.3.5 comedi_get_hardcal_converter

comedi_get_hardcal_converter — get converter for hardware-calibrated subdevice

Synopsis

#include <comedilib.h>

int comedi_get_hardcal_converter(comedi_t * device, unsigned subdevice, unsigned channel, unsigned range, enum comedi_conversio
direction, comedi_polynomial_t * converter);

Status

alpha

Description

The function comedi_get_hardcal_converter() initializes the comedi_polynomial_t pointed to by converter so it
can be passed to either comedi_to_physical(), or comedi_from_physical(). The result can be used to convert data
from the specified subdevice, channel, and range. The di rection parameter specifies whether converter will be passed
to comedi_to_physical() or comedi_from_physical().

This function initializes the comedi_polynomial_t pointed to by converter as a simple linear function with no calibration in-
formation, appropriate for boards which do their gain/offset/nonlinearity corrections in hardware. If your board needs calibration
to be performed in software by the host computer, use comedi_get_softcal_converter() instead. A subdevice will
advertise the fact that it depends on a software calibration with the SDF__SOFT_CALIBRATED subdevice flag.

The result of this function will only depend on the channel parameter if either comedi_range_is_chan_specific() or
comedi_maxdata_is_chan_specific() returns true for the specified subdevice.

Return value

Returns 0 on success, —1 on failure.

Comedi
60 /148

5.4.3.6 comedi_get_softcal_converter

comedi_get_softcal_converter — get converter for software-calibrated subdevice

Synopsis

#include <comedilib.h>

int comedi_get_softcal_converter(unsigned subdevice, unsigned channel, unsigned range, enum comedi_conversion_direction
direction, const comedi_calibration_t * parsed_calibration, comedi_polynomial_t * converter);

Status

alpha

Description

The function comedi_get_softcal_converter() initializes the comedi_polynomial_t pointed to by converter so it
can be passed to either comedi_to_physical() or comedi_from_physical(). The comedi_polynomial_t pointed to by
converter can then be used to convert data for the specified subdevice, channel, and range. The direction parameter
specifies whether converter will be passed to comedi_to_physical() or comedi_from physical(). The parsed-
calibration parameter points to the software calibration values for your device, and may be obtained by calling comedi -
parse_calibration_file()on a calibration file generated by the comedi_soft_calibrate program.

This function is only useful for boards that perform their calibrations in software on the host computer. A subdevice will advertise
the fact that it depends on a softw