
Using Conquest on LINUX – version 1.4.17d

The server core (dgate.exe = dgate under Linux) compiles and runs on Linux systems and Solaris. I
develop primarily under Windows, but currently I test the code and scripts under the Ubuntu 10.10 64
bits server and Linux Mint 14 release in a virtual machine. The server also compiles and runs on a
Raspberry Pi.

The Linux release of the server core works default with SqLite driver built in into the server (no
ODBC). The DbaseIII driver is also supported. Piotr Filipczuk has added a PostGresSQL driver. Since
version 1.4.15, a native MySQL interface also can be used. The graphical user interface has not been
ported to Linux, but the WEB interface is provided. In this version, most options have been well tested
– it is a stable release.

To use the server, one needs a valid version of the configuration files and put them in the same
directory as the dgate executable. The easiest way to do this is to unpack conquestlinux1417d.gz with
“tar xvf conquestlinux1417d.gz” that contains:

dgate Server executable
dicom.ini Server configuration (for sqlite)
dicom.ini.dbase Template configuration for built in dbase driver
dicom.ini.sqlite Template configuration for built in sqlite driver
dicom.ini.postgres Template server configuration for postgres
dicom.ini.mysql Template server configuration for mysql
dicom.ini.www Template configuration for web server
dicom.sql Database configuration (normalized)
dicom.sql.dbase Template database configuration (denormalized)
dicom.sql.postgres Template database configuration (normalized)
dicom.sql.sqlite Template database configuration (normalized)
dicom.sql.mysql Template database configuration (normalized)
acrnema.map Configuration of know DICOM providers
dgate.dic DICOM dictionary
dgatesop.lst Accepted data and services (with jpeg)
dgatesop.lst.nojpg Template accepted data and services (no jpeg)
dgatesop.lst.withjpg Template accepted data and services (with jpeg)
maklinux Shell script to compile and install dgate
maklinux_postgres Idem but using Postgres as database
maklinux_sqlite Idem but using SqLite as database
maklinux_mysql Idem but using MySQL as database
maklinux_dbase Idem but using DbaseIII as database
maklinux.bat Used by mvh for collecting files in Linux distribution.
Makefile Sample Makefile (unused)
DicomConformance_FilesLST_Changes.pdf Part of manual
windowsmanual.pdf Part of manual
linuxmanual.pdf Part of manual (this file)
data/dbase/ Place for database (SqLite or DbaseIII)
data/samples/ Sample images
data/samples/HEAD_EXP_00097038/0001_002000_892665661.v2
data/samples/HEAD_EXP_00097038/0001_003000_892665662.v2

Plus all the sources needed to build the server: aaac.cxx, aaac.hpp, aarj.cxx, aarj.hpp, aarq.cxx,
aarq.hpp, amap.cpp, array.tcc, array.thh, base.hpp, buffer.cxx, buffer.thh, cctypes.h, constant.h,
dbsql.cpp, deivr.cxx, deivr.hpp, device.cpp, dgate.cpp, dgate.hpp, dgatefn.cpp, dicom.hpp, dimsec.cxx,
dimsec.hpp, dimsen.cxx, dimsen.hpp, dprintf.cpp, dprintf.hpp, endian.cpd, endian.cxx, endian.hpd,
endian.hpp, farray.thh, filepdu.cxx, flpdu.cxx, flpdu.hpp, gpps.cpp, gpps.hpp, lex.cpp, lex.hpp,
loadddo.cpp, nkiqrsop.cxx, nkiqrsop.hpp, npipe.cpp, npipe.hpp, odbci.cpp, odbci.hpp, parse.cpp,
pdata.cxx, pdata.hpp, pdu.cxx, pdu.hpp, queue.tcc, pqueue.thh, qrsop.cxx, qrsop.hpp, regen.cpp,
rtc.cxx, rtc.hpp, safemem.h, socket.cxx, socket.hpp, sqlite3.c, sqlite3.h, storage.cxx, storage.hpp,
total.cxx, trnsyn.cxx, uniq.cxx, unixsock.h, util.cxx, util.h, verify.cxx, verify.hpp, version.h,
vrtosql.cpp, wintypes.hpp, xvgifwr.c

Plus the sources of a modified version of the IJG code: jpeg-6c, that allows run-time selection of bit
depth (done by Bruce Barton), the jasper-1.900.1-6ct library (also modified by Bruce Barton), and
lua_5.1.4 (original but with one macro renamed for Ubuntu 10.10 compatibility).

Plus ZeroBraneStudio integration files, webserver sample files, sample lua scripts and a placeholder
clibs folder for binary modules used by lua scripting.

INSTALLATION

Prerequisites: 1) a running Linux system. 2) sudo installed and enough rights to perform sudo. If not,
the script will not be able to install the server as web service for apache and you need to copy the files
by hand. 3) Installed G++; 4) Check /usr/lib/cgi-bin/ exists and is enabled in apache2.conf.

These packages needed to be installed in a plain Linux Mint14 release for a release using SQLite:
sudo apt-get update
sudo apt-get install g++
sudo apt-get install apache2

The following steps illustrate a minimal installation (maklinux_xxx may need adjustments for your
local installation):

(ps)ftp the gz file to linux system (e.g., into your home directory) get the files there
mkdir conquest
cd conquest to there
tar xvf ../conquestlinux1417c.tar.gz unpack all files

cd jpeg-6c make the IJG library
./configure
sudo make
sudo make install
cd ..

cd jasper-1.900.1-6ct make the jasper library
./configure
sudo make
sudo make install
cd ..

./maklinux compile and install web access
(or: maklinux_dbase, or: maklinux_postgres, or: maklinux_mysql)

dgate -v -r regenerate the database
dgate -v & run the server (for ever)

Now the server should be running and localhost/cgi-bin/dgate should provide a working web interface.

ZerobraneStudio IDE

To install and use ZeroBrane Studio with the conquest DICOM server under Linux, take these steps.
First download ZeroBraneStudioEduPack-xxx-linux.sh. Then in a command prompt run:

chmod 777 ZeroBraneStudioEduPack-xxx-linux.sh
./ZeroBraneStudioEduPack-xxx-linux.sh

After installation is done run ZeroBrane Studio from the command prompt as “sudo zbstudio” and run
the install script /dicomserver/ZeroBraneStudio/install.lua in ZeroBrane Studio as described in this file.
After running the conquest install script as root, ZeroBraneStudio can be run as a normal user.

As, in linux, the socket library is not linked into the dgate binary, you have to copy (for a 64 bits
conquest) “/opt/zbstudio/bin/X64/clibs/socket/core.so to” “/dicomserver/clibs/socket” or (for a 32 bits
conquest): “/opt/zbstudio/bin/X86/clibs/socket/core.so” to “/dicomserver/clibs/socket”.

Note: to enable the use of shared libraries and io.popen, I had to add -DLUA_USE_DLOPEN and
-DLUA_USE_POSIX to the gcc line compiling lua/all.c in all ./maklinuxXXX scripts.

Some of the scripts make use of external binaries:

I installed cmake and cmake-qt-gui to build and install nifty_reg
Then I installed mricron as 'small' nifti viewer
and finally p7zip.full to enable use of 7za as decompressor

CONFIGURATION

Configuration files under Windows and Linux are the same except for the use of a forward slash
instead of back slash in directory paths. The following essential entries are therefore different for Linux
(these are the defaults):

SQLServer = ./data/dbase/conquest.db3
MAGDevice0 = ./data/

See the Windows manual for more details about the configuration files (you need at least to edit
acrnema.map to define DICOM systems that will be retrieving information from your server). All
configurations options in dicom.ini (e.g., for DICOM routing) are listed in windowsmanual.pdf. You
probably also need to edit the web server configuration file /usr/lib/cgi-bin/dicom.ini to set the correct
IP address of the machine. If not the web server will only partly function.

After copying the files, if needed, regenerate the database with “conquest/dgate –v –r” then run the
server with “conquest/dgate –v” or “conquest/dgate -^serverstatus.log”. NOTE: regeneration is only
needed after an upgrade if dicom.sql is updated. If you want to avoid regeneration do NOT replace
dicom.sql

To automatically start the server at boot time create a shell script in /etc/rc5.d called Z99Conquest, that
contains, e.g.,:

cd /home/marcel/conquest
dgate -^serverstatus.log

The building process for the server was tested with gcc 3.3.5, Ubuntu 8.10 and on Solaris 10. Both 32
and 64 bit OS's are supported. Warnings (many ‘multi-character character constant’ and one ‘fattach is
not implemented and will always fail’) are produced but these do not impact server operation.

Shell script maklinux is available that compiles dgate, copies it to the cgi-bin directory for web access,
and sets up (overwrites) dicom.ini and dicom.sql for SqLite operation. The SqLite driver is built-in.

Also a shell script maklinux_dbase is available that compiles dgate with dbaseIII support and copies it
to the cgi-bin directory for web access. It also sets up (overwrites) dicom.ini and dicom.sql for
dbaseIII operation. The dbaseIII driver is built-in.

Also a shell script maklinux_mysql is available that compiles dgate with MySQL support and copies it
to the cgi-bin directory for web access. It also sets up (overwrites) dicom.ini and dicom.sql for SqLite
operation. It requires creating a DB called "conquest" with phpmyadmin and installing
libmysqlclientdev with: “apt-get install libmysqlclient-dev” before running maklinux_mysql. These are
the settings in dicom.ini for MySQL:

SQLHost = localhost
SQLServer = conquest
Username = root
Password =
Mysql = 1

DoubleBackSlashToDB = 1

Also a shell script maklinux_postgres is available that compiles dgate and copies it to the cgi-bin
directory for web access. It also makes sure the postgres shared libraries can be found, and sets up
(overwrites) dicom.ini and dicom.sql for PostGres operation. The PostGres system (I used postgresql-
8.1beta1.tar.bz2) most be setup to the defaults, and a database named ‘conquest’ made. For postgres to
work you need to check some values in dicom.ini (using the default postgres account assuming
password postgres, note that parameter ‘SQLServer’ sets the database to conquest). A copy from
dicom.ini.postgres to dicom.ini would set the following values:

SQLHost = localhost
SQLServer = conquest
Username = postgres
Password = postgres
PostGres = 1
DoubleBackSlashToDB = 1
UseEscapeStringConstants = 1

It is advised to use a normalized database (as defined in dicom.sql) for postgres operation, e.g., by
copying dicom.sql.postgres to dicom.sql and a denormalized database for DbaseIII, e.g., by copying
dicom.sql.dbase to dicom.sql . The following are donated scripts by Mark Pearson for start/stop and
rotating logfiles:

To install this script (it is in the distribution as conquest-pacs.sh) do:

sudo cp conquest-pacs.sh /etc/init.d/
sudo chmod 755 /etc/init.d/conquest-pacs.sh
sudo apt-get install authbind
sudo /etc/init.d/conquest-pacs.sh start

#!/bin/bash

conquest-pacs.sh SysV init script for Conquest PACS.

Written by Miquel van Smoorenburg <miquels>.
Modified for Debian GNU/Linux by Ian Murdock <imurdock>.
Customized for Conquest by Mark Pearson <markp>

HOME and PACSUSER should be the only variables that may need to be
modified.

PATH=/sbin:/bin:/usr/sbin:/usr/bin

Modify HOME to suit your environment.
HOME=/usr/local/conquest
This is the user to run as. Modify it if you don't use username conquest.
PACSUSER=conquest

DAEMON=$HOME/dgate
INI=$HOME/dicom.ini
NAME=conquest_pacs.sh

All defaults here will be overridden by values from $HOME/dicom.ini
STATUSLOG=$HOME/serverstatus.log
PORT=104
DESC="Conquest PACS Server"

STOPPACS=$HOME"/dgate --quit:"
STARTAS=$DAEMON

test -f $DAEMON || echo "Cannot find $DAEMON" exit 0
test -f $INI || echo "Cannot find $INI" exit 0

set -e

if grep "TCPPort" $INI > /dev/null ; then
 PORT=`egrep -i '^*TCPPort *= ' $INI | sed 's/\r//' | awk '{ print $3}'`
fi

if [$PORT -le 1024]; then
 test -f /usr/bin/authbind || echo "authbind is needed for access to ports <
1024" exit 0
 STARTAS="/usr/bin/authbind "
fi

if grep -is "^ *StatusLog" $INI > /dev/null ; then
 STATUSLOG=`egrep -i '^*StatusLog' $INI | sed 's/\r//' | awk '{ print
$3}'`
fi

PIDFILE=/var/run/$NAME.$PORT.pid
if [$STARTAS = $DAEMON]; then
 ARGS=" -^$STATUSLOG"
else
 ARGS="$DAEMON -^$STATUSLOG"
fi

case "$1" in
 start)
 if [-f $HOME/disable_autostart]; then
 echo "Not starting $DESC: disabled via $HOME/disable_autostart"
 exit 0
 fi

 echo -n "Starting $DESC: "
 start-stop-daemon --start --quiet --pidfile $PIDFILE \
 --chuid $PACSUSER --chdir $HOME --exec $DAEMON \
 --startas $STARTAS --background -- $ARGS
 echo "$NAME."
 ;;
 stop)
 echo -n "Stopping $DESC: "
 cd $HOME
 $STOPPACS

 start-stop-daemon --oknodo --stop --quiet --pidfile $PIDFILE \
 --exec $DAEMON -- $ARGS
 echo "$NAME."
 echo

 ;;

 restart|force-reload)
 echo -n "Restarting $DESC: "
 start-stop-daemon --stop --oknodo --quiet --pidfile $PIDFILE \
 --exec $DAEMON -- $ARGS
 sleep 1
 start-stop-daemon --start --quiet --pidfile $PIDFILE \
 --chuid conquest --chdir $HOME --exec $DAEMON -- $ARGS
 echo "$NAME."
 ;;
 *)
 N=/etc/init.d/$NAME
 echo "Usage: $N {start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac

exit 0

For security reasons I have added a user "conquest" and the package authbind to allow access to
priveleged ports. I added the following entries to dicom.ini:
HomeDir = /usr/local/conquest
StatusLog = /var/log/conquest/NMPACS.serverstatus.log
TroubleLog = /var/log/conquest/NMPACS.PacsTrouble.log

The file /etc/cron.weekly/conquest_rotate does weekly log rotation for me.

#!/bin/bash

conquest_rotate Cron script to rotate conquest log files.
Keep files for 365 days
Read filenames from dicom.ini

Written by Mark Pearson 20070711 <markp>.

Modify this line to suit your environment
HOMES=(/usr/local/conquest /usr/local/conquest-icon)
for i in ${HOMES[@]}; do

 INI=${i}/dicom.ini
 STATUSLOG=${i}/serverstatus.log
 TROUBLELOG=${i}/PacsTrouble.log

 set -e

defaults will be overridden by values from ${i}/dicom.ini
 if grep -is "^ *StatusLog" $INI > /dev/null ; then
 STATUSLOG=`egrep -i '^*StatusLog' $INI | sed 's/\r//' | awk
'{ print $3}'`
 fi
 if grep -is "^ *TroubleLog" $INI > /dev/null ; then
 TROUBLELOG=`egrep -i '^*TroubleLog' $INI | sed 's/\r//' | awk
'{ print $3}'`

 fi

 if [-s $TROUBLELOG]; then
 savelog -p -c 365 -n -q $TROUBLELOG
 fi

 if [-s $STATUSLOG]; then
 savelog -p -c 365 -n -q $STATUSLOG
 fi
done

This copes with multiple pacs instances on the same host. The advantage of using savelog is that old
logfiles are compressed. It should be quite simple to edit the files to have executable or log in /opt.
Also, don't forget to set the appropriate file permissions for the user that runs conquest.

Finally, Here are the command lines to compile the server under OS X xcode using 10.4u sdk on a
PowerPC:

 g++ -isysroot /Developer/SDKs/MacOSX10.4u.sdk -arch ppc -Wno-multichar
-I/usr/local/mysql/include -L/usr/local/mysql/lib -DDARWIN -DUSEMYSQL -DHAVE_LIBJASPER
-DHAVE_LIBJPEG -DB_DEBUG -o dgate total.cxx -lpthread -lgcc_s.10.4 -lstdc++.6 -lmysqlclient
-lz

And to compile under SOLARIS 10:

 /usr/sfw/bin/g++ -DUNIX -DNATIVE_ENDIAN=1 -DHAVE_LIBJASPER -DHAVE_LIBJPEG
-DSOLARIS total.cxx -o dgate -lpthread -lsocket -lnsl -lposix4

