MUSIC — Multi-Simulation Coordinator

Users Manual

Orjan Ekeberg and Mikael Djurfelds

December 4, 2019

Abstract

MUSIC is an API allowing large scale neuron simulators using MPI internally
to exchange data during runtime. MUSIC provides mechanisms to transfer
massive amounts of event information and continuous values from one parallel
application to another. Special care has been taken to ensure that existing sim-
ulators can be adapted to MUSIC. In particular, MUSIC handles data transfer
between applications that use different time steps and different data allocation
strategies.

Contents

1 Introduction

1.1 Scope . . . o .
1.2 Design Goals
1.2.1 Portability o
1.2.2 Simplicity o
1.2.3 Independence
1.2.4 Performance
1.2.5 Extensibility 0 0L
1.3 Terminology
1.4 Relation to Existing Software

2 Execution Model

2.1 Phases of Execution 0.
2.2 Spatial Distribution of Data
2.3 Timing Considerations,
2.4 Message Ports
2.5 Application Responsibilities
3 Starting a Multi-Simulation
3.1 Overview
3.2 The Configuration File
4 Application Program Interface
4.1 Conventions
4.2 Error handling,
4.3 Setup
4.3.1 The setup constructor
4.3.2 Communicators
4.3.3 Portcreation oo
4.3.4 General port methods
4.3.5 Mapping cont ports
4.3.6 Mapping event portso
4.3.7 Mapping message ports
438 Indexmaps
4.3.9 Datamapso
4.3.10 Configuration variables
44 Runtime
4.4.1 The runtime constructor

0O~ 31O O Ut ot ot Ut

10
11
12
13

15
15
15

CONTENTS

4.4.2 Thetick e
4.4.3 Simulation time
4.4.4 Finalization e

5 Adapting Existing Applications
5.1 Creating and Mapping Ports
5.2 Advancing Simulation Time
5.3 Initialization and Finalization
5.3.1 Imitiate MUSIC
5.3.2 Initiate the runtime phase
5.3.3 Finalize MUSIC

A A Complete Example
A.1 Configuration File oL
A.2 Data Generating Application
A.3 Data Consuming Application

B C Interface

C Specification File Syntax

31
31
32
33
33
33
33

35
35
35
37

39

43

List of Figures

1.1

2.1
2.2
2.3
24

5.1
5.2

Typical multi-simulation 6
Mapping of data Lo o 11
Timing of data transfer, slowdown 12
Timing of data transfer, speedup 12
Timing of ticks oo o 13
Processing of incoming data 0oL 32
Remapping of data within MUSIC 32

Chapter 1

Introduction

This document constitutes the final specification for the multi-simulation coor-
dinator MUSIC.

1.1 Scope

MUSIC is a standard for run-time exchange of data between parallel applications
in a cluster environment. The standard is designed specifically for interconnect-
ing large scale neuronal network simulators, either with each-other or with other
tools.

A typical usage example is illustrated in figure 1.1, where three applications
(A, B, and C) are executing in parallel while exchanging data via MUSIC.
We will refer to this as a multi-simulation, since the participating applications
typically are neuronal simulators, or tools to support such simulators. In this
example, application A produces runtime data which is then used by B and
C. In addition, B and C mutually send data to each other. The data sent
between applications can be either event based, such as neuronal spikes, or
graded continuous values, for example membrane voltages.

The primary objective of MUSIC is to support multi-simulations where each
participating application itself is a parallel simulator with the capacity to pro-
duce and/or consume massive amounts of data. This promotes inter-operability
by allowing models written for different simulators to be simulated together in
a larger system. It also enables re-usability of models or tools by providing a
standard interface. The fact that data is spread out over a number of processors
makes it non-trivial to coordinate the transfer of data so that it reaches the right
destination at the right time. The task for MUSIC is to relieve the applications
from handling this complexity.

1.2 Design Goals

1.2.1 Portability

The MUSIC library and utilities have been designed to run smoothly on state-
of-the-art high-performance hardware. For maximal portability, the software is
written in C++4, which is the de facto standard for current high-end hardware.

CHAPTER 1. INTRODUCTION

Appl. C

Appl. A

Appl. B

Figure 1.1: Illustration of a typical multi-simulation using MUSIC. Three ap-
plications, A, B, and C, are exchanging data during runtime.

MUSIC also provides a C-interface, making it possible for applications written
in C or FORTRAN to participate in a MUSIC multi-simulation.

Most, if not all, current efforts in large scale neuronal simulations are based
on the MPI standard. MUSIC is built on top of MPI, and uses it to run the
different simulators. MUSIC provides means to allow each simulator to use MPI
internally without interfering with the others.

MUSIC has been developed using two reference platforms: Intel-based multi-
core workstations and the IBM BlueGene/L supercomputer. These platforms
can be considered as two extremes, where the multi-core machine represents a
small parallel environment while the BlueGene/L represents a large scale mas-
sively parallel supercomputer with special requirements. In particular, the com-
pute nodes on the BlueGene/L do not support multiple threads or processes.

1.2.2 Simplicity

For MUSIC to be useful, it must be possible to adapt existing simulators so
that they can participate in a multi-simulation without too much effort. We
rely on the simulator developers to make these adaptations. An important
design goal has therefore been to adapt the design to the typical structure of
current simulators. It should be possible to add MUSIC library support without
invasive restructuring of the existing code.

The primary requirements on an application using MUSIC is that it declares
what data should be exported and imported and that it repeatedly calls a func-
tion at regular intervals during the simulation to allow MUSIC to make the
actual data transfer.

1.2.3 Independence

The MUSIC interface ensures that each individual application does not need
special adaptation to specific properties of other applications. The application
only needs to adhere to the specification of the MUSIC interface in order to
communicate with other applications performing complementary tasks. This

CHAPTER 1. INTRODUCTION

makes the development of MUSIC-aware software independent of what other
applications it will communicate with.

We hope that this will facilitate the development of general purpose tools.
For example, a researcher can develop a tool for calculating synthetic EEG from
simulation data. Via MUSIC, this tool should then be useful for anybody using
any neuronal simulator which supports the common MUSIC interface.

1.2.4 Performance

The MUSIC API has been designed to allow for data transport of high band-
width and low latency within the cluster. One means of ensuring the best use
of the hardware while maintaining portability is to use the facilities of MPI for
communication. MPI encapsulates software optimizations for specific hardware.
By basing the interface on MPI we can benefit from such optimizations.

1.2.5 Extensibility

Where possible, MUSIC allows for extensions by the application programmer.
Some classes in the MUSIC API (such as the index and data maps) can be
subclassed in order to provide facilities not available directly in the API.

1.3 Terminology

application We use the term application to denote a simulator or other pro-
gram interfaced to MUSIC. Each application is a parallel program, nor-
mally running on several processors.

multi-simulation We use the term multi-simulation to refer to the whole par-
allel execution of multiple applications coordinated by MUSIC.

port Each application declares its ability to produce and consume data by
publishing ports. Ports are named by the application and provided with
information about the datatype (continuous data, spike events, messages)
and mapping onto different processors. Ports are either InputPorts or
OutputPorts.

connection During the setup phase, MUSIC connects pairs of ports together
to form connections. During the runtime phase, data is transferred over
the connection from the producer of the data to the consumer. While an
InputPort can have only one connection, an OutputPort can be connected
to multiple InputPorts.

data map A data map denotes the information on where data actually resides
within the application. This is typically stored internally in the port data
structure. Data to be transferred over a connection can be regarded as a
large array distributed over multiple processors. The data map tells on
what processor each data element resides and how it should be accessed.

ticks During the runtime phase, all processes in each application must make
a tick call at regular intervals in simulated time. At these tick points,
MUSIC is allowed to use MPI to transfer data between processors.

CHAPTER 1. INTRODUCTION

1.4 Relation to Existing Software

MUSIC is not the only software project aiming to support inter-operability
between neural simulators. In this section we will briefly describe some related
projects and specifically focus on how they relate to MUSIC.

PyNN PyNN is a Python package for simulator-independent specification of
neuronal network models. It provides a low-level procedural API and a high-
level object-oriented API. Neuronal network models which are specified using
these API:s can be simulated on simulators supporting PyNN, such as Neuron
and NEST.

PyNN could be extended to support multi-simulations using the MUSIC
library. Such an extension would provide means for controlling the interaction
between the simulator and the MUSIC library and would, for example, support
publishing of named ports.

It is possible, in principle, to write Python code to directly handle communi-
cation between applications in a cluster, but such a solution would be inefficient
compared to using MUSIC, and might, in the end, have to address the same
problems which MUSIC provides a solution to.

Neurospaces The Neurospaces project promotes inter-operability and re-
usability through the development of independent software components, some
of which, together, will provide one of two alternative cores of the Genesis 3
simulator. One of the components, the Neurospaces Model Container abstracts
model description from the solver. Another component, the Discrete Event Sys-
tem can handle distribution and queuing of spikes. Components adhere to the
CBI simulator architecture.

It is possible to develop a MUSIC adapter consistent with the CBI simulator
architecture. This would allow the Neurospaces framework, and Genesis 3, to
interface to independently running applications in a cluster environment.

Chapter 2

Execution Model

2.1 Phases of Execution

A multi-simulation, i.e. a set of interconnected parallel applications, is executed
in three distinct phases:

Launch is the phase where all the applications are started on the processors.
During this phase, MUSIC is responsible for distributing and launching
the application binaries on the set of MPI processes allocated to the MU-
SIC job. Since MPI can be initialized first when the applications have
been launched, most of this work needs to be performed outside of MPI.
In particular, the tasks of accessing the command line argument of the
MUSIC launch utility and of determining the ranks of processes before
MPI initialization therefore has to be handled separately for different MPI
implementations.

Technically, the launch phase begins when mpirun launches the MUSIC
binary and ends when the Setup object constructor returns. (See further
description below.)

Setup is the phase when all applications can publish what ports they are pre-
pared to handle along with the time step they will use and where data will
be present (where in memory and/or on what processor). During the setup
phase, applications can read configuration parameters communicated via
the common configuration file. At the end of the setup phase, MUSIC will
establish all connections.

The setup phase begins when the Setup object has been created and ends
when the runtime object constructor returns.

Runtime is the phase when simulation data is actually transferred between
applications. Via tick calls the simulated time of applications is kept in
order.

The runtime phase begins when the runtime object has been created and
ends when its finalize method is called.

From the application programmers point of view, these phases are clearly
separated through the use of two main components of the MUSIC interface:

CHAPTER 2. EXECUTION MODEL

the Setup and the Runtime object. The launch phase is not visible for the
application since it handles the situation before the application starts.

When the application initializes MUSIC at the beginning of execution it
receives a specific Setup object. This object gives access to the functionality
relevant during the setup phase via its methods. When done with the setup, the
application program makes the transition to the runtime phase by passing the
Setup object as an argument to the runtime object constructor which destroys
the Setup object. The runtime object provides methods relevant during the
runtime phase of execution.

2.2 Spatial Distribution of Data

Communication between applications is handled by ports. Ports are named
sources (output ports) or sinks (input ports) of data flows. The data to be
communicated may be differently organized in process memory on the receiver
side compared to the sender side. The applications may run on different numbers
of processes, and, the data may be differently distributed among the sender
processes and the receiver processes, as is shown in Figure 2.1. How does MUSIC
know which data to send where?

In MUSIC, there are two views of the data to be communicated over a
connection. Data elements are enumerated differently according to these views.
MUSIC uses shared global indices to enumerate the entire set of data to be sent
over the connection while local indices enumerate the subset of data which is
stored in the memory of a particular MPI process. Data does not need to be
ordered in the same way according to the two views. For example, data stored
in an array may be associated with an arbitrary subset of global indices in an
arbitrary order.

The MUSIC library is informed about the relationship between global and
local indices and how data is stored in memory during the setup phase. Two
abstractions are used to carry this information:

The IndexMap maps local indices to global indices. That is, the IndexMap
tells which parts of a distributed data array are handled by the local process
and how the data elements are locally ordered.

The DataMap encapsulates how a port accesses its data. The DataMap con-
tains an IndexMap. While an index map is a mapping between two kinds of
indices, the data map also contains information about where in memory data
resides, how it is structured, and, the type of the data elements. The type is
used for marshalling when running on a heterogeneous cluster.

During setup every process of the application individually provides the port
with a DataMap (or an IndexMap in the case of event ports).

Rationale: While connections are often used to handle the transfer
of spikes from one group of neurons to another, they should not be
regarded as an implementation of synaptic projections. Connections
will only handle a direct one-to-one transport from one application to
another. Re-mapping to actual receiving neurons, e.g. to implement
an all-to-all projection, must be handled by one of the applications.
Thus, it may be better to regard the ports as prozxy-objects, providing
indirect access to neurons simulated by the other application.

10

CHAPTER 2. EXECUTION MODEL

Sender Receiver
74.’ 4.'7
| — —
| E— — |
> —
|)
+~ P~
< | E—] ZJ"
<r— - |/ \\] AT~ 77::‘(-
5 Width g
< - g
3 —— — A
18 = L2
] — T
— [1o
=] = =
E —
[e]
2 g
=] I e I W NG R, 7
2] I — ®
A /s
o SR &
| E—]
3 —
| E— — |
| E—]

Figure 2.1: Data transfer over a connection from an application running in four
processes to an application running in three processes. The light gray areas in
the sender and receiver represents the MUSIC port. Dashed lines divide the
application into distinct processes.

2.3 Timing Considerations

Different applications may use different time steps and it is the responsibility
of MUSIC to ensure that data is delivered at the appropriate time. In order to
minimize handshaking, both parts of a connection pair locally calculate when
the actual data transfer over MPI takes place. To ensure that these calculations
produce predictable results, simulation time is internally represented using in-
tegers with a global micro-timestep common for all applications.

Simulation time is local for each application and MUSIC does not enforce
unnecessary synchronization between these local clocks. Thus, an application
producing data may be running ahead of another application which consumes
the same data. MUSIC internally builds a schedule which ensures that data
arrives at the appropriate local time in the receiving application. Scheduling
becomes more complex when data is not only transferred in a feed-forward
manner, i.e. when the connection graph contains loops. In this case MUSIC
has to rely on the existence of sufficient delays in the simulated model, typically
corresponding to axonal delays.

Figures 2.2 and 2.3 illustrate how MUSIC handles time when transferring
continuous data over a connection. In figure 2.2, the sender application uses a
shorter tick interval than the receiver. The sender side uses values sampled at
the tick points to interpolate a value corresponding to the point in time when
the receiver makes its tick call.

The dark middle area (labelled “MPI”) is where the actual data transfer
takes place. MUSIC makes use of the fact that the receiving application can
run with its simulation clock set independently of the sender. The arrows going
“backwards in time” in this area reflect the fact that the receivers clock is

11

CHAPTER 2. EXECUTION MODEL

MUSIC MUSIC
71 74 LS T2 TSl 74i 7oi
3 Receiver i 3 Receiver i
Simulated Time Simulated Time
Figure 2.2: Transfer of data when Figure 2.3: Transfer of data when
sender has a shorter tick interval sender has a longer tick interval
than the receiver. than the receiver.

lagging. This makes it possible for data to arrive in time despite the fact that
it was available later (e.g. at tick s3) than when it was arriving (at 1), when
talking about simulated time.

Figure 2.3 illustrates what happens when the receiver of continuous data is
calling tick faster then the sender. The sender will then buffer up values from
the preceding and current ticks and transfer this at a suitable tick call. The
receiver will portion these values out by interpolating at the appropriate ticks.

The strategy of having the receiver application running with a delayed local
clock only works when the connection graph forms a directed acyclic graph
(DAG). When loops occur it is necessary to allow for data arriving late, at
least somewhere along each loop. MUSIC handles this via acceptable latency
which is a property of event input ports. The receiving application declares
how late, according to simulation time, data may arrive, thus giving MUSIC
room for resolving the scheduling problem. In the case of continuous data, the
application specifies a delay which fulfills the same purpose.

In figures 2.2 and 2.3, the sending application must be running ahead of the
receiver in order to maintain the illusion that communication is instantaneous.
Figure 2.4 illustrates the timing relation between sender and receiver along a
real time axis (wallclock time) when the receiver accepts a delay of incoming
data. This allows the receiver (B) to run ahead of the sender (A), thus creating
the slack necessary to make schedules for communication loops.

2.4 Message Ports

In addition to the port types which handle continuous and spike event data,
MUSIC provides message ports. Message ports allow for transmission of ar-
bitrary messages of, for example, control information between applications. A
multi-simulation may, for example, be controlled by a script running in a Python
process on one of the cluster nodes. The script may use a message port to alter
a parameter or turn on a stimulus in an application at a certain point in time.

12

CHAPTER 2. EXECUTION MODEL

Wallclock Time

Figure 2.4: This figure illustrates how MUSIC can allow one application (B) to
execute ahead of another (A) when transferring continuous data. The receiver
(B) has specified a delay on the input port which means that the value to be
delivered at each tick (gray areas) corresponds to a simulated time in A (blue
arrows) which has already happened.

Note that the tick times when MUSIC actually transfers data will be aligned
on the real time axis, since blocking communication is used. In practice, one of
the applications will have to wait for the other to reach the same point in its
execution.

Messages sent from any process on the sender side of the connection are
routed to all processes on the receiver side which have announced there willing-
ness to receive messages. Contrary to ports for continuous data, any marshalling
is the responsibility of the sender and receiver application.

To achieve independence between MUSIC applications, it is recommended
that messages are text strings with the syntax of the interpreter language of the
receiving application, and that these text strings originate from a user-specified
configuration file read by the sending application.

2.5 Application Responsibilities

One goal of MUSIC has been to limit the responsibilities imposed on each ap-
plication (c.f. section 1.2.2). Here we present a step-by-step list of what an
application must do in order to participate in a multi-simulation.

1. Initiate MUSIC
This is done by calling the Setup function.

2. Create ports

Data to be imported and exported is identified by creating named ports.

3. Map ports

MUSIC is informed about where the actual data is located. This includes
information about which processor owns each data element. For continu-
ous data it also includes information about where in memory it is stored,
while for event data it specifies how to receive events.

13

CHAPTER 2. EXECUTION MODEL

4. Initiate the runtime phase

At this stage, MUSIC can build the plan for communication between dif-
ferent processes.

5. Advance simulation time

The application must call tick at regular intervals to give MUSIC the
opportunity to transfer data.

6. Finalize MUSIC

By calling finalize, all MUSIC communication is terminated.

14

Chapter 3

Starting a Multi-Simulation

3.1 Overview

Parallel programs based on MPI are normally started by running a special pro-
gram called mpirun (for MPI-1) or mpiexec (for MPI-2). To start multiple
applications and enable them to communicate with each other, MUSIC utilizes
a special launcher program called music which, in turn, starts the different ap-
plications. Information about which applications should be started, and the
communication pattern between them is described in a common configuration

file.

Rationale: The reason for not controlling configuration via the
MUSIC API is that individual applications should remain ignorant
about the structure of the full multi-simulation. Thus, the API
provides methods for asking about the parts of the configuration
relevant for that application, i.e. its ports, but does not expose the
complete communication graph.

3.2 The Configuration File

The main purpose of the configuration file is to control what applications to
start, and to connect output ports to input ports. The configuration file specifies
the number of MPI processes allocated to each application.

The configuration file consists of a sequence of blocks, each starting with a
non-indented bracket:

[application_label]

Each block consists of a sequence of configuration variable definitions applying to
one application. The application label is used to refer to ports of the application.
A variable definition takes the form of an assignment:

varname = value

The following variable names have special meaning to MUSIC:

binary Pathname to application binary

15

CHAPTER 3. STARTING A MULTI-SIMULATION

args Command line given to the binary
np The number of MPI processes to allocate for the application

timebase The length of a MUSIC micro-step, that is, the resolution of MU-
SIC:s internal clocks). (Default value is 1 ns.)

Rationale: The possibility to specify the MUSIC timebase is pro-
vided since the timebase is a compromise between resolution and
maximal simulation time. With 64-bit clocks, a timebase of 1 ns
gives a maximal simulation time of 585 years which should be suffi-
cient for most applications.

Arbitrarily named parameters may also be included in the configuration file
and these parameters can be accessed from the applications.

A connection between an output and input port is specified using the fol-
lowing syntax:

application_label.port_name —> application_label.port_name

The direction of the arrow (—>, <—) indicates the direction of data transport.
An output port can be connected to multiple input ports while an input port
can be connected to, at most, one output port.

Optionally, the width of the connections between applications can be speci-
fied:

application_label.port_-name —> application_label.port_name [width]

The application label can be omitted if it refers to the application being specified
by the surrounding block. An example of a simple configuration file can be seen
in section A.1. Appendix C specifies the formal syntax of configuration files.

Rationale: Information from the configuration file needs to be
available both in order to launch the application binaries and during
the setup phase. Since launching must be done prior to MPI initial-
ization, it is not possible to distribute configuration information via
MPI itself. In the reference implementation of MUSIC, environment
variables are used to distribute this information to the applications.

This information transfer is hidden within MUSIC, so a different
implementation of MUSIC may use another technique. In particular,
if the applications are launched from a scripting program, such as
PyNN, that program must also take care of transferring the relevant
configuration information to the applications.

16

Chapter 4

Application Program
Interface

4.1 Conventions

This chapter describes the API to the MUSIC library. The API is object ori-
ented and all communication with the library is performed via instance methods
of different classes of objects. Appendix B presents an alternative C interface.
The most common way of passing objects as arguments in MUSIC is via point-
ers. The only exception is the Setup constructor. The convention regarding
memory management is that the caller should make sure that objects exist in
memory during the entire execution of the method, and is also responsible for
the deallocation of objects afterwards.

4.2 Error handling

MUSIC attempts to fall back on the error handling mechanisms of MPI. A
MUSIC exception thus results in a call to the MPI error handler. A particular
implementation of the MUSIC library does not guarantee that it handles all
kinds of errors that may occur during MUSIC calls. Each error handled by
MUSIC generates an exception, and MUSIC installs suitable error codes, classes
and strings so that the MPI error handler is able to generate suitable error
messages.

MUSIC follows the style of error handling in the MPI standard, which is
described in sections 7.2 and 7.3 in the MPI 1.1 report[1] and in section 2.8 of the
MPT 2.0 report[2]. The default error handler of MPT is MPI_ERRORS_ARE_FATAL
which means that any error handled by MUSIC will result in the program being
aborted. Using the error handling of MPI requires features only described in the
MPI 2.0 report. For MPI implementations which lack this support, MUSIC uses
its own error handler which has the same behavior as MPI_ERRORS_ARE_FATAL.

Rationale: MUSIC adheres to the error handling strategy of MPI
since the application is already using MPI and should not need to

implement a second error handling strategy when converted to use
MUSIC.

17

CHAPTER 4. APPLICATION PROGRAM INTERFACE

4.3 Setup

4.3.1 The setup constructor

Each application initializes the MUSIC library through a call to the Setup con-
structor. This constructor, in turn, calls MPI::Init to initialize MPI. The Setup
constructor creates the Setup object through which the application can retrieve
configuration information, get an application wide communicator, and setup
ports.

Setup::Setup (int& argc, charxx& argv)

argc reference to the argc argument of main
argv reference to the argv argument of main

This constructor must be called at most once; subsequent calls are erroneous.
It accepts the argc and argv that are provided by the arguments to main.

Example 4.1: Initializing MUSIC

int main (int argc, char xargv|])

{

MUSIC:: Setup* setup = new MUSIC::Setup (argc, argv);

/x parse arguments x/
/+x rest of program x/

}

Rationale: The idea behind creating a specific setup object is to
ensure that the application does not accidentally call functions rel-
evant only for the setup phase at other times.

4.3.2 Communicators

During a multi-simulation the MUSIC library will create a unique intra-communi-
cator over the group of processes assigned to each application. This application
wide communicator takes the role of the global communicator MPI::COMM_WORLD
and is retrieved from the setup object through a call to the communicator
method.

MPI:: Intracomm Setup::communicator ()

return value the application wide communicator

The application is supposed to use the application wide communicator in
place of MPI::COMM_WORLD. If the application binary has been launched using
mpirun instead of the music utility, communicator () will return MPI::COMM_WORLD
as the application wide communicator.

18

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Example 4.2: Accessing the application-wide communicator

/x communicator with global scope */
extern MPI_Comm comm;

comm = setup—>communicator ();
int rank = comm.Get_rank ();

Rationale: An alternative to provide the communicator function
would have been to redefine MPI::COMM_WORLD. This would ensure
that an application does not accidentally use the global communica-
tor. However, it may not always be possible to dynamically redefine
this variable in all MPI implementations, so for the sake of porta-
bility, we have chosen a more straightforward technique.

4.3.3 Port creation

Ports are named sources (output ports) or sinks (input ports) of data flows.
Output and input ports are distinct classes. Ports are further subdivided into
distinct classes depending on whether they handle continuous data, event data
or messages.

ContOutputPortx
Setup :: publishContOutput (string id)

ContInputPortx*
Setup :: publishContInput (string id)

EventOutputPortx
Setup :: publishEventOutput (string id)

EventInputPortx*
Setup :: publishEventInput (string id)

MessageOutputPortx
Setup :: publishMessageOutput (string id)

MessageInputPortx*
Setup :: publishMessageInput (string id)

id port name
return value an unmapped port

Ports have two stages in life: the unmapped stage and the mapped stage.
A port is unmapped when created. The MUSIC configuration file specifies
connections between ports. It is possible to ask an unmapped port if it is

19

CHAPTER 4. APPLICATION PROGRAM INTERFACE

connected, if it has a width specified and, if so, what width it has. A port
becomes mapped when its method map is called.

Example 4.3: Creating an unmapped port

ContOutputPort* out =
setup—>publishContQutput ("out”);

4.3.4 General port methods

The port API includes methods to ask a port if it is connected, if it has a width
specified, and, if so, what that width is.

Port connectivity

The method isConnected is used to check if the user has specified a connection
of this port to another port in the configuration file.

bool Port::isConnected ()

return value true only if connected

This method is typically used in cases where the use of some of the ports
of the application is optional. In such a case, it is not sensible to allocate any
application resources to support the data flow in question. One example is if
one wants to support output of membrane potentials from a certain population
of cells, but don’t want to waste resources if no one is listening.

Example 4.4: Optional handling of ports

ContOutputPort* out =
setup—>publishContQutput (”"Vm”);
/* map port only if anyone is listening */
if (out—>isConnected ())
/+ allocate application resources and map port x/

Port width

The width of a port, that is the number of data elements transferred in parallel
from a cont port or the largest possible id of an event port 4+ 1, can be specified
in the configuration file. This should be thought of as a request for a given
width. Applications can use the method hasWidth to determine if a width has
been specified and retrieve it using width. Message ports do not have width.

bool Port::hasWidth ()

return value true only if port width has been specified

int Port::width ()

return value port width

20

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Rationale: Applications can use the above methods to adapt their
port width. A typical usage would be a general purpose post-
processing tool which receives information from an ongoing simu-
lation. Such a tool can publish a number of optional input ports
and then use isConnected and width to adapt its internal process-
ing depending on what kind of data source it is actually connected
to. See example 4.5.

Example 4.5: Publishing port of adaptive width

/x Publishing a port of adaptive width x/
doublex stateVars;
MUSIC::ContInputPort* in =
setup—>publishContInput (”in”);
if (!in—>hasWidth ())
/x report error x/
else
{
int size = in—>width ();
/+ for clarity we assume that nElements
is a multiple of size x/
int nLocal = nElements / size;
/x example continues as in next example x/

4.3.5 Mapping cont ports

A port is informed about what data exists locally and how to access it by map-
ping it. Cont ports transfer data from or to memory during tick calls and need
to know the layout of data in memory. In addition, the marshalling (conversion
between different bit level representations) performed on heterogeneous clusters
requires information about the data type being transferred. This information
is captured by the data map argument dMap. The DataMap type is described in
section 4.3.9 below.

21

CHAPTER 4. APPLICATION PROGRAM INTERFACE

void ContOutputPort::map (DataMapx* dMap,
int maxBuffered)

void ContInputPort::map (DataMap* dMap,
double delay,
int maxBuffered,
bool interpolate)

dMap the data map associated with the port
delay delay of data arrival in simulation time (s)
maxBuffered maximal amount of data buffered (ticks)
interpolate enable interpolation (boolean)

The optional argument delay informs MUSIC of when, according to simu-
lation time, to sample data on the sender side. If enabled, linear interpolation
is used to obtain an approximation of the state at this time. The default delay
is zero. Delayed continuous data may be used in connectionist networks when
modeling brain pathways. A delay is required at some point when communicat-
ing continuous data in a loop (c.f. section 2.3).

Buffering data in output and input ports gives more efficient communica-
tion since data can be sent fewer times in larger packets. By default MUSIC
buffers some reasonable amount of data. In certain situations it is necessary
to be careful about memory usage. Using the optional argument maxBuffered
the application can give MUSIC a bound on how much data to buffer. MUSIC
decides how much data to buffer based on the lowest maxBuffered parameter
given when mapping each of a set of connected ports and on latency consid-
erations when applications are connected in loops. A maxBuffered value of
N ticks means: don’t buffer more data than is sufficient for communicating at
every N th tick.

When the optional argument interpolate is true, MUSIC uses linear in-
terpolation to determine the values delivered on the receiver side. This is the
default behavior. By passing false this interpolation can be switched off in
which case MUSIC selects the sample on the sender side which is closest ac-
cording to simulation time.

22

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Example 4.6: Mapping ports to internal data

int size = comm.Get_size ();
int rank = comm.Get_rank ();
/x for clarity we assume that nElements
is a multiple of size x/
int nLocal = nElements / size;
doublex stateVars = new double[nLocal];
MUSIC:: ContInputPort* out =
setup—>publishContQutput ("out”);
MUSIC:: ArrayData dMap (stateVars, MPI::DOUBLE,
rank * nlLocal, nLocal);
out—>map (&dMap);

4.3.6 Mapping event ports

void EventOutputPort::map (IndexMap* indices,
Index:: Type type,
int maxBuffered)

void EventInputPort::map (IndexMap* indices,
EventHandler*x handleEvent,
double acclLatency,
int maxBuffered)

indices the index map associated with the port
type the indexing type used (local or global)
handleEvent a user-defined event handler
accLatency acceptable latency for incoming data (s)
maxBuffered maximal amount of data buffered (ticks)

Since event ports don’t access data the same way as cont ports, they do not
require a full DataMap. Instead, an IndexMap is used to describe how indices
in the application should be mapped to the shared global indices common for
sender and receiver. The applications has the choice of using local indices or
bypassing the index transformation by directly using the shared global indices
when labelling events. This is controlled by the type parameter which can be
set to MUSIC::Index::LOCAL or MUSIC::Index::GLOBAL.

Events are communicated to the application through an event handler. The
event handler is called by MUSIC when the application calls tick. It is called
once for every event delivered.

Some spiking neural network models include axonal delays. The MUSIC
framework assumes that handling and delivery of delayed spikes occurs on the
receiver side. In such a case, the receiver may allow MUSIC to deliver a spike
event later than its time stamp according to local time. The maximal acceptable
latency is specified through the accLatency argument.

23

CHAPTER 4. APPLICATION PROGRAM INTERFACE

The optional argument maxBuffered has a similar meaning as for cont ports
above but the actual amount of data buffered is, in this case, not deterministic
since it is dependent on spike rate.

Sending events

The sender registers events for transmission by calling the method insertEvent.

void EventOutputPort::insertEvent (double t,
LocalIndex id)

void EventOutputPort::insertEvent (double t,
GlobalIndex id)

t trigger time of the event (s)
id the local or global index of the event

MUSIC guarantees that this event will be delivered through a call to the user-
specified EventHandler on the receiver side no later that the acceptable latency
relative to receiver local time. The time t must be between the simulation time
of the last tick and that of the next.

The parameter id should be converted from int to LocalIndex or GlobalIndex
to indicate what kind of indices are used in the application.

Receiving events

class EventHandlerLocallndex {
public:
virtual void operator () (double t,
LocalIndex id) = 0;

}s

class EventHandlerLocallndex {
public:
virtual void operator () (double t,
GlobalIndex id) = 0;

}s

t trigger time of the event (s)
id local or global index if the event

Event handlers are called by event input ports to deliver events. The applica-
tion is supposed to customize either LocalEventHandler or GlobalEventHandler
by subclassing one of them (depending on the indexing scheme the application
uses).

24

CHAPTER 4. APPLICATION PROGRAM INTERFACE

4.3.7 Mapping message ports

Message ports behave similarly to event ports in that messages are sent and
delivered using similar mechanisms, but while events are routed between pro-
cesses based on event indices, messages are routed to all processes on the receiver
side which have provided a MessageHandler to map. All arguments to map for
message ports are optional.

void MessageOutputPort::map (int maxBuffered)

void MessageInputPort::map (MessageHandlerx handler,
double acclLatency,
int maxBuffered)

handler a user-defined message handler
accLatency acceptable latency for incoming data (s)
maxBuffered maximal amount of data buffered (ticks)

Sending messages

The sender registers a message for transmission by calling the method
insertMessage.

void MessageOutputPort ::insertMessage (double t,
void* msg,
size_t size)

t time stamp (s)
msg pointer to message
size size of message in bytes

MUSIC will deliver this message through a call to the user-specified
MessageHandler on the receiver side no later than accLatency with regard to
the time stamp.

Example 4.7: Sending a message

char m[] = "string.to.send”;
port—>insertMessage (runtime—>time (), m, sizeof (m));

25

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Receiving messages

class MessageHandler {
public:
virtual void operator () (double t,
voidx msg,
size_t size) = 0;

}s

t time stamp supplied by sender (s)
msg pointer to message subclass instance
size size of message instance in bytes

Message handlers are called by message input ports to deliver messages.
The application is supposed to customize MessageHandler by subclassing. It is
recommended that messages are text strings with the syntax of the interpreter
language of the receiving application, and that these text strings originate from
a user-specified configuration file read by the sending application.

The message given to the MessageHandler is deallocated by the MUSIC
library.

4.3.8 Index maps

An IndexMap is a mapping from the local data element indices to shared global
indices. An index map instance thus holds information of which subset of the
shared global indices belong to the local MPI process and of their local or-
der. MUSIC implements two subclasses of IndexMap: PermutationIndex and
LinearIndex. The most general form is PermutationIndex which allows for an
arbitrary mapping.

PermutationIndex : : PermutationIndex (intx indices,
int size)

indices vector of shared indices
size number of shared indices

LinearIndex :: LinearIndex (int baseIndex, int size)

baseIndex shared index corresponding to local index zero
size number of contiguous indices in this process

When a cont output port is mapped it becomes associated with a set of state
variables (or other data) in the memory of the sender. When the receiver calls
runtime::tick, an estimate of the values of these variables are stored in a set of
variables associated with an input port on the receiver side. Similarly, an event
output port is mapped to a set of event id:s.

While the number of variables or id:s on the receiver side is always the same
as on the sender side, the data can be distributed in different ways between MPI
processes on the sender side compared to the receiver side. In fact, sender and
receiver may consist of different numbers of processes.

26

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Index maps are used in each MPI process to tell MUSIC how data is dis-
tributed and ordered by enumerating the shared indices represented by the
process in local order.

4.3.9 Data maps

A DataMap encapsulates how a port accesses its data. While an index map is a
mapping between two kinds of indices, the data map also contains information
about where in memory data resides, how it is structured, and, the type of the
data elements. ArrayData is a subclass of DataMap which describes arrays of
data elements. See example 4.6.

ArrayData:: ArrayData (void+ buffer, MPI_Datatype type,
IndexMap#* map)

buffer data memory location
type data type
map index map

Since data organized in arrays is common, MUSIC provides a convenience
form of the array data map constructor which also creates a linear index map:

ArrayData:: ArrayData (voidx buffer,
MPI_Datatype type,
int baselndex,
int size)

buffer data memory location

type data type

baseIndex shared index of first local element

size number of contiguous indices in this process

4.3.10 Configuration variables

The values of all variables defined in the configuration file can be queried using
the method config.

bool Setup::config (string name, stringx result)
bool Setup::config (string name, intx result)

bool Setup::config (string name, doublex result)

name variable name
result pointer to location where result should go
return value true if value of correct type was found

Querying for a value of type int or double expects a value of the correct
type, if defined in the configuration file. If the variable is defined, but its value
can’t be translated into the correct type this causes an error condition.

27

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Example 4.8: Querying configuration variables

/+* Retrieving the parameter gKCa
from configuration file x/
double gKCa;
if (lconfig ("gKCa”, &gKCa))
gkCa = 29.5¢—9; // default wvalue

4.4 Runtime

4.4.1 The runtime constructor

Runtime ::Runtime (Setupx* s, double h)

s pointer to the Setup object
h simulated time increment at each tick (s)

Creation of the runtime object marks the transition from the setup to the
runtime phase. The runtime object constructor destroys the Setup object, ef-
fectively making it impossible to create new ports. All data structures which
have been associated with ports during mapping must be initialized to some
suitable start value at the time of the call to the runtime constructor. These
values are used during early data transfers of data sampled at negative values
of simulation time and, thus, not available.

Example 4.9: Runtime

MUSIC::Runtime runtime = MUSIC::Runtime (setup, stepSize);

Rationale: The step size is given as a real number (in seconds)
since this makes most sense from the applications point of view.
Internally, this number is converted to an integer (using the time
micro step time base). This is made to ensure that all processes use
exactly the same numbers even when the multi-simulation is running
on mixed architectures. Both sides of a connection must agree on
when data is transferred over the MPI connector to minimize the
need for handshaking during the runtime phase.

Rationale: In order to create a deterministic schedule for buffering
and data transfer, we require that tick increments simulated time
by a fixed amount each time. We realize that some applications may
use a variable time step for their numerical integrations, which may
then make it harder to execute these tick calls at the right time.
However, allowing variable tick steps would have made it impossible
to use a pre-computed deterministic schedule and enforced repeated
handshaking throughout the runtime phase, resulting in a substan-
tial performance degradation.

28

CHAPTER 4. APPLICATION PROGRAM INTERFACE

Note that the tick step does not need to be equal to the internally
used integration step. We believe that most large scale parallel sim-
ulators already have some means for fixed interval operations, e.g.
to handle logging to files or graphics, which may be utilized also for
the tick calls.

4.4.2 The tick

void Runtime::tick ()

The tick function must be called at regular intervals in simulation time. The
application chooses the interval as a parameter to the Runtime constructor,
normally based on the time step used in the application. The tick function
is typically called in the main simulation loop of each application. Different
applications may use different tick intervals and MUSIC will ensure that time
is incremented consistently throughout the multi-simulation.

Before tick is called, the application must ensure that all data mapped for
output is valid. At the tick call, time is incremented and data mapped for
input is updated to reflect the new time. Further, installed event handlers will
be called during the tick call to deliver events.

The MUSIC library may, or may not, exchange data with other applications
at the tick call. The application must ensure that exported data values are valid
when tick is called. It must also expect that imported values may change and
that event and message handlers are called.

Rationale: The idea behind the tick call is to hide the complexity
of data buffering and MPI transfer from the application. For efficient
data transfer, MUSIC will try to buffer data both at the sending
and receiving port in order to send data in large chunks. Internally,
MUSIC will use a pre-computed schedule to keep track of at what
ticks the actual data transfer should take place and when data should
instead be buffered for later transfer.

4.4.3 Simulation time

The method time returns local time in seconds.

double Runtime::time ()

return value local time (s)

time returns the local time. Time starts at 0s and is incremented at every
tick call. While it is possible, and recommended, to let MUSIC keep track of
time for the application, this is not required.

Rationale: To schedule data transfers, MUSIC needs to keep track
of the simulation time of all applications via its internal integer rep-
resentation. If the application independently manages its own clock,
typically by incrementing a floating point variable, there is a risk

29

CHAPTER 4. APPLICATION PROGRAM INTERFACE

for drift between the two time representations. The time function
makes it possible for the application to keep its clock in perfect syn-
chronization with time in the other applications.

4.4.4 Finalization

An application supporting MUSIC should replace its call to MPI::Finalize with
a call to MUSIC::finalize.

void Runtime:: finalize ()

MUSIC::finalize makes sure all internally buffered data is sent and finally
calls MPI::Finalize. Note that this means that communication via MPI will
not be possible afterwards.

30

Chapter 5

Adapting Existing
Applications

In this chapter we will highlight the steps necessary to adapt an existing neural
simulator to MUSIC. We will assume that the simulator is already using MPI
to simulate large networks of interconnected neurons.

The two main tasks that need to be handled are: firstly, to create and map
ports for data to be imported and exported, and, secondly, to ensure that the
tick function is called at regular intervals.

5.1 Creating and Mapping Ports

The application needs to inform MUSIC about what data to import and export,
and where this data resides. A simulator will typically use some sort of script
files where the user specifies the model and other aspects of the simulation. If
possible, it is desirable to extend the scripting language of the simulator so that
the user can specify what model variables to communicate, and what names to
use for ports.

Assuming that we have introduced such constructs into the scripting lan-
guage, we must decide on a suitable point in the initialization process where
ports should be created and mapped. Since continuous data is read from, or
written to, application memory space, the program must have allocated its run-
time data structures in order to perform the mapping.

Communication of spikes will use event ports. Function calls are used to
send and receive individual spike events. Sending of spikes is relatively straight-
forward, since the only thing needed is to add a call to the method insertEvent
at the location where spikes are normally detected in the program. Receiving
spikes requires more administration, since the spikes can be received earlier than
when they should reach their destination compartment. It is therefore necessary
to save incoming spikes in some sort of sorted buffer (typically a priority queue).

In addition, MUSIC will always present the spikes as they appear in the
sending group of neurons. In most situations, the receiving application will
want to implement a remapping to the target compartments, as illustrated in
figure 5.1. One spike may thus end up at multiple postsynaptic compartments,
spread out over the processors of the receiving application.

31

CHAPTER 5. ADAPTING EXISTING APPLICATIONS

Receiver

el

11!

Figure 5.1: The sender application
presents the data to the output port
in the same order as it is stored in-
ternally. The receiving application
will see the transferred data in the
same order and will explicitly have
to implement a proper reordering to

Sender Receiver

11

11!

Figure 5.2: If there is a one-to-
one correspondence between send-
ing and receiving neurons, the re-
ceiving application can specify an
appropriate index map to instruct
MUSIC to send the data directly to
the right destination.

implement a typical synaptic pro-
jection.

In some situations it may be desirable for the receiving application to avoid
this remapping. The application can then utilize the different forms of mappings
available in MUSIC to create a general permutation so that MUSIC will send
spikes directly to the processor where they should be handled. This situation is
illustrated in figure 5.2

5.2 Advancing Simulation Time

The application must call the tick function repeatedly throughout the simula-
tion. The application will have to ensure that these calls are made at regular
intervals, as specified to the runtime constructor. Note that this refers to sim-
ulated time; there is no need to consider how much computation time (“wall
clock time”) is used between tick calls.

If the application makes use of variable time steps internally, it may be
necessary to use some sort of checkpoints at fixed intervals where tick can be
called. It is not necessary to call tick at every integration time step, but the
calls should not be too infrequent.

The tick calls are the only times during runtime when MUSIC will use MPI.
MUSIC will then use its own communicators, not to interfere with the MPI
operations of the application. Still, we recommend that the application does
not intersperse the tick calls with ongoing MPI operations.

When sending continuous values the application must ensure that data ar-
rays mapped for output are filled with values relevant for the time of the next

32

CHAPTER 5. ADAPTING EXISTING APPLICATIONS

tick. After the tick call, data arrays mapped for input will be filled with im-
ported data belonging to the same point in time. Note that Runtime::time is
updated during the tick call to reflect the current simulation time.

5.3 Initialization and Finalization

5.3.1 Initiate MUSIC

The idea here is to replace the call to MPI::Init with a call to the MUSIC:Setup
constructor. The Setup constructor calls MPI::Init for the application.

The application will have to replace all uses of the global communicator
MPI::COMM_WORLD with the communicator supplied by MUSIC. The global com-
municator will be global over all applications and it is necessary to limit the
MPI operations to the group of MPI processes belonging to the application.

There should be no need to link an application differently when it is used
together with other applications in a MUSIC setting compared to when it is
used in a stand-alone setting. In order to support “standard” operation for the
application, Setup::communicator (), therefore, will return MPI::COMM_WORLD if
the job is started directly with mpirun instead of with the MUSIC launcher.

5.3.2 Initiate the runtime phase

Creating the runtime object will implicitly call the Setup object destructor to
ensure that the application will no longer be able to change the communication
pattern. At this stage, MUSIC can build the plan for communication between
different processes.

5.3.3 Finalize MUSIC

The application should also replace its call to MPI::Finalize, normally used to
shut down communication, by a call to MUSIC::finalize. This will internally
call MPI::Finalize after having flushed all pending data from internal buffers.

33

Bibliography

[1] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html,
November 2003.

[2] Message Passing Interface Forum. MPI-2: Extensions to the message-
passing interface. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html, November 2003.

34

Appendix A

A Complete Example

This chapter shows a minimal but still complete example. It consists of two
applications, waveproducer and waveconsumer, and a configuration file used to
launch and connect them.

A.1 Configuration File

The configuration file starts the waveproducer application on four processors
and waveconsumer on three.

stoptime=1.0
[producer]
binary=waveproducer
args=120
np—4
[consumer |
binary=waveconsumer
args—dumpfile
np=3
producer.wavedata —> wavedata[120]

A.2 Data Generating Application

#include <mpi.h>
#include <cstdlib>
#include <cmath>
#include <music.hh>

#define TIMESTEP 0.001

MPI:: Intracomm comm;
doublex data;

int

35

APPENDIX A. A COMPLETE EXAMPLE

main (int argc, charx argv]])

{
MUSIC:: Setup* setup = new MUSIC::Setup (argc, argv);

int width = atoi (argv|[l]); // command line arg gives width

MUSIC:: ContOutputPortx wavedata =
setup—>publishContOutput (”wavedata”);

comm = setup—>communicator ();
int nProcesses = comm.Get_size (); // how many processes are there?
int rank = comm.Get_rank (); // which process am I?

// For clarity , assume that width is a multiple of n_processes
int nLocalVars = width / nProcesses;
data = new double[nLocalVars];
for (int i = 0; i < nLocalVars; ++i)
data[i] = 0.0;

// Declare what data we have to export
MUSIC:: ArrayData dmap (data,

MPI :: DOUBLE,

rank * nLocalVars,

nLocalVars);
wavedata—>map (&dmap);

double stoptime;
setup—>config (”stoptime”, &stoptime);

MUSIC::Runtime* runtime = new MUSIC::Runtime (setup, TIMESTEP);

for (; runtime—>time () < stoptime; runtime—>tick ())

{

if (rank = 0)

{

// Generate original data on master node
int 1i;

double time = runtime—>time ();

for (i = 0; i < nLocalVars; ++i)

b
data[i] = sin (2 * M_PI x* time x i);
}

// Broadcast these data out to all nodes
comm.Bcast (data, nLocalVars, MPI::DOUBLE, 0);

}

runtime—>finalize ();

delete runtime;

36

APPENDIX A. A COMPLETE EXAMPLE

return 0;

}
A.3 Data Consuming Application

#include <mpi.h>

#include <music.hh>
#include <fstream>
#include <sstream>

#define TIMESTEP 0.0005

MPI:: Intracomm comm;
doublex data;

int
main (int args, charx argv][])

{

MUSIC::Setup* setup = new MUSIC::Setup (args, argv);

MUSIC::ContInputPort* wavedata =
setup—>publishContInput (”wavedata”);

comm = setup—>communicator ();
int nProcesses = comm.Get_size (); // how many processes are there?
int rank = comm.Get_rank (); // which process am I?

int width = 0;
if (wavedata—>hasWidth ())
width = wavedata—>width ();
else
comm. Abort (1);

// For clarity , assume that width is a multiple of n_processes
int nLocalVars = width / nProcesses;

data = new double[nLocalVars];

std::ostringstream filename;

filename << argv[l] << rank << ”.out”;

std::ofstream file (filename.str ().data ());

// Declare where in memory to put data
MUSIC:: ArrayData dmap (data,

MPI :: DOUBLE,

rank * nLocalVars,

nLocalVars);
wavedata—>map (&dmap);

double stoptime;

setup—>config (”stoptime”, &stoptime);
MUSIC::Runtime* runtime = new MUSIC::Runtime (setup, TIMESTEP);

37

APPENDIX A. A COMPLETE EXAMPLE

for (int j =0; runtime—>time () < stoptime; j++)

{
runtime—>tick ();

// Dump to file
for (int i = 0; i < nLocalVars; ++i)

file << data[i] << '.7;
file << std::endl;

}

runtime—>finalize ();
delete runtime;

return 0;

}

38

Appendix B

C Interface

Most elements of the C interface can be constructed from their C++ counter-
parts using a few translation rules:

1. All identifiers have the prefix MUSIC_.

2. Constructors translate to create followed by the class name.
3. Destructors translate to destroy followed by the class name.
4. Methods translate to class name followed by method name.
5. References translate to pointers.

6. Strings translate to char x.

7. Optional C++ arguments are required in C.

Entries which do not strictly follow these rules are preceded with an extra
comment in the following listing.

/x Setup =/

MUSIC_Setup *MUSIC_createSetup (int xargc, char xxxargv);
/x Communicators */

MPI_Intracomm MUSIC_Setup_communicator (MUSIC_setup #*setup);
/x Port creation x/

MUSIC_ContOutputPort +MUSIC_publishContOutput (MUSIC_setup *setup,
char xid);

MUSIC_ContInputPort *MUSIC_publishContInput (MUSIC_setup *setup,

char *id);
MUSIC_EventOutputPort +MUSIC_publishEventOutput (MUSIC_setup xsetup,
char xid);

MUSIC_EventInputPort #MUSIC_publishEventInput (MUSIC_setup *setup,

char xid);

39

APPENDIX B. C INTERFACE

MUSIC_MessageOutputPort *MUSIC_publishMessageOutput (MUSIC_setup x*setup,
char xid);
MUSIC_MessagelnputPort #*MUSIC_publishMessagelnput (MUSIC_setup *setup,
char xid);

void MUSIC_destroyContOutput (MUSIC_ContOutputPorts port);

void MUSIC_destroyContInput (MUSIC_ContInputPort* port);

void MUSIC_destroyEventOutput (MUSIC_EventOutputPortx port);
void MUSIC_destroyEventInput (MUSIC_EventInputPortx port);

void MUSIC_destroyMessageOutput (MUSIC_MessageOutputPorts port);
void MUSIC_destroyMessageInput (MUSIC_MessageInputPort* port);

/+ General port methods x/

/+ Xzz = Cont | Event
Ddd = Output | Input *x/

int MUSIC_XxxDddPort_isConnected (XxxDddPort s*port);

int MUSIC_MessageDddPort_isConnected (MessageDddPort *port);
int MUSIC_XxxDddPort_hasWidth (XxxDddPort sxport);

int MUSIC_XxxDddPort_width (XxxDddPort xport);

/* Mapping */
/+* No arguments are optional. x/

void MUSIC_ContOutputPort_map (MUSIC_ContOutputPort s*port,
MUSIC_ContData *dMap,
int maxBuffered);

void MUSIC_ContInputPort_map (MUSIC_ContInputPort xport,
MUSIC_ContData *dMap,
double delay,
int maxBuffered,
int interpolate);

void MUSIC_EventOutputPort_map (MUSIC_EventOutputPort s*port,
MUSIC_IndexMap *indices,
int maxBuffered);

typedef void MUSIC_EventHandler (double t, int id);

void MUSIC_EventInputPort_map (MUSIC_EventInputPort sport,
MUSIC_IndexMap #*indices,
MUSIC_EventHandler xhandleEvent,
double acclatency,
int maxBuffered);

void MUSIC_MessageOutputPort_map (MUSIC_MessageOutputPort xport,
int maxBuffered);

40

APPENDIX B. C INTERFACE

typedef void MUSIC_MessageHandler (double t, void xmsg, size_t size);
void MUSIC_MessagelInputPort_map (MUSIC_MessageInputPort s*port,
MUSIC_MessageHandler *handleMessage,
double acclLatency,
int maxBuffered);

/x Index maps x/

MUSIC_PermutationIndex #*MUSIC_createPermutationIndex (int xindices,
int size);

void MUSIC_destroyPermutationIndex (MUSIC_PermutationIndex xindex);

MUSIC_LinearIndex *MUSIC_createlinearIndex (int baseIndex,
int size);

void MUSIC_destroylLinearIndex (MUSIC_LinearIndex #index);
/+ Data maps */
/x FEzception: The map argument can take any type of index map. */

MUSIC_ArrayData *MUSIC_createArrayData (void xbuffer,
MPI_Datatype type,
void xmap);

/x FExzception: MUSIC_createLinearArrayData corresponds to
c++ music :: ArrayData :: ArrayData (..., N I V4

MUSIC_ArrayData *MUSIC_createlinearArrayData (void xbuffer,
MPI_Datatype type,
int baseIndex,
int size);

void MUSIC_destroyArrayData (MUSIC_ArrayData xarrayData);
/x Configuration variables x*/
/x FExzceptions: Result is char x
Extra mazlen argument prevents buffer overflow.
Result is terminated by \0 wunless longer than mazlen — 1 %/
int MUSIC_config (MUSIC_Setup *setup,
char xname,
char xresult,

size_t maxLen);

int MUSIC_config (MUSIC_Setup *setup, char xname, int xresult);

41

APPENDIX B. C INTERFACE

int MUSIC_config (MUSIC_Setup *setup, char kname, double xresult);
/* Runtime x/

MUSIC_Runtime *MUSIC_createRuntime (MUSIC_Setup #setup, double h);
void MUSIC_tick (MUSIC_Runtime *runtime);

double MUSIC_time (MUSIC_Runtime sruntime);

/x Finalization x/

void MUSIC_destroyRuntime (MUSIC_Runtime sruntime);

42

Appendix C

Specification File Syntax

<simulation spec> == { <application block> }

<application block> := <newline> [’ <application id>]’ { <declaration> }
<application id> = <symbol>

<declaration> = <variable def> | <connection>

<variable def> = <variable> '=" <value>

<variable> = <symbol>

<value> = <integer> | <float> | <string>

<connection> = <port id> <direction> <port id> [<width>]
<port id> = <application id> ’. <port> | <port>

<port> = <symbol>

<direction> = —>|<-

<width> m= '] <integer>)’

43

Index

acceptable latency, 11
accLatency, 22
acyclic graph, 11
advance time, 13
application, 6

arge, 17

argv, 17

ArrayData, 26
axonal delay, 10

BlueGene/L, 5

COMM_WORLD, 17
communicator, 17

config, 26

configuration file, 14
configuration variables, 26
connected port, 19
connection, 6

cont ports, 20

DAG, 11
data map, 6
data maps, 26
delay, 11

event handler, 22
event ports, 22
EventHandler, 23

finalize, 13, 29, 32

Get_rank, 18
global index, 9

hasWidth, 19

IBM BlueGene, 5
index maps, 25

init, 17

initialize MPI, 17
initiate MUSIC, 12, 32

input port, 6
insertEvent, 23
insertMessage, 24
integration step, 28
isConnected, 19

latency, 11
launch phase, 8
LinearIndex, 25
local index, 9
loops, 11

map, 21, 22, 24

map ports, 12

mapping cont ports, 21
mapping event ports, 22
mapping message ports, 24
maxBuffered, 23

message port, 11

message ports, 24
micro-timestep, 10

MPI, 5
MPIL::COMM_WORLD, 17
MPI::Init, 17

mpiexec, 14

mpirun, 14
multi-simulation, 6

music (launcher), 14

NEST, 7
Neuron, 7
Neurospaces, 7

output port, 6

PermutationIndex, 25
port, 6

port width, 19

ports, 18

projections, 9

proxy objects, 9
publish input, 18

44

INDEX

publish output, 18
PyNN, 7, 15

rank, 18

receiving events, 23
receiving messages, 25
runtime phase, 8

sending events, 23
sending messages, 24
setup, 17

setup phase, 8

shared index, 9
simulation time, 10, 28

terminate, 13, 32
tick, 6, 13, 28
time, 13, 28

variable time step, 27

width, 19

45

